Scope: Hesperetin-7-O-rutinoside (hesperidin) reduces blood pressure in healthy volunteers but its intestinal absorption and metabolism are not fully understood. Therefore, we aimed to determine sites of absorption and metabolism of dietary flavanone glycosides in humans.
Methods And Results: Using a single-blind, randomized crossover design, we perfused equimolar amounts of hesperetin-7-O-rutinoside and hesperetin-7-O-glucoside directly into the proximal jejunum of healthy volunteers. We assessed the appearance of metabolites in the perfusate, blood and urine, to determine the sites of metabolism and excretion, and compared this to oral administration. The glucoside was rapidly hydrolyzed by brush border enzymes without any contribution from pancreatic, stomach, or other secreted enzymes, or from bacterial enzymes. Only ∼3% of the dose was recovered intact in the perfusate, indicating high absorption. A proportion was effluxed directly back into the perfused segment mainly in the form of hesperetin-3'-O-sulfate. In contrast, very little hydrolysis or absorption of hesperetin-7-O-rutinoside was observed with ∼80% recovered in the perfusate, no hesperetin metabolites were detected in blood and only traces were excreted in urine.
Conclusion: The data elucidate the pathways of metabolism of dietary hesperidin in vivo and will facilitate better design of mechanistic studies both in vivo and in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.201500202 | DOI Listing |
Curr Atheroscler Rep
January 2025
Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thorax, F-44000, Nantes, France.
Purpose Of Review: While lipid-lowering therapies demonstrate efficacy, many patients still contend with significant residual risk of atherosclerotic cardiovascular diseases (ASCVD). The intestine plays a pivotal role in regulating circulating lipoproteins levels, thereby exerting influence on ASCVD pathogenesis. This review underscores recent genetic findings from the last six years that delineate new biological pathways and actors in the intestine which regulate lipid-related ASCVD risk.
View Article and Find Full Text PDFClin Transl Sci
January 2025
Global Biometrics and Data Management, Pfizer Research and Development, New York, New York, USA.
The pharmaceutical industry constantly strives to improve drug development processes to reduce costs, increase efficiencies, and enhance therapeutic outcomes for patients. Model-Informed Drug Development (MIDD) uses mathematical models to simulate intricate processes involved in drug absorption, distribution, metabolism, and excretion, as well as pharmacokinetics and pharmacodynamics. Artificial intelligence (AI), encompassing techniques such as machine learning, deep learning, and Generative AI, offers powerful tools and algorithms to efficiently identify meaningful patterns, correlations, and drug-target interactions from big data, enabling more accurate predictions and novel hypothesis generation.
View Article and Find Full Text PDFNutrients
December 2024
Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy.
Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.
View Article and Find Full Text PDFNutrients
December 2024
Department of Cardiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
Background: Micronutrient deficiencies are common and play a significant role in the prognosis of many chronic diseases, including heart failure (HF), but their prevalence in HF is not well known. As studies have traditionally focused on causes originating within the intestines, exocrine pancreatic insufficiency (EPI) has been overlooked as a potential contributor. The exocrine pancreas enables the absorption of various (fat-soluble) micronutrients and may be insufficient in HF.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia.
Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!