Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455739PMC
http://dx.doi.org/10.1098/rsbl.2015.0146DOI Listing

Publication Analysis

Top Keywords

frontiers marine
4
marine movement
4
movement ecology
4
ecology mechanisms
4
mechanisms consequences
4
consequences migration
4
migration dispersal
4
dispersal marine
4
marine habitats
4
frontiers
1

Similar Publications

Crucial role of subsurface ocean variability in tropical cyclone genesis.

Nat Commun

January 2025

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA.

The upper ocean provides thermal energy to tropical cyclones. However, the impacts of the subsurface ocean on tropical cyclogenesis have been largely overlooked. Here, we show that the subsurface variabilities associated with the variation in the 26 °C isothermal depth have pronounced impacts on tropical cyclogenesis over global oceans.

View Article and Find Full Text PDF

Quinazolinone Derivative MR2938 Protects DSS-Induced Barrier Dysfunction in Mice Through Regulating Gut Microbiota.

Pharmaceuticals (Basel)

January 2025

MOE Key Laboratory of Marine Drugs, MOE Key Laboratory of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.

: Ulcerative colitis (UC), a chronic inflammatory bowel disease (IBD), is characterized by colorectal immune infiltration and significant microbiota compositional changes. Gut microbiota homeostasis is necessary to maintain the healthy state of humans. MR2938, a quinazolin-4(3H)-one derivative derived from the marine natural product penipanoid C, alleviated DSS-induced colitis in a dose-dependent manner.

View Article and Find Full Text PDF

Genomic analysis of Vreelandella sp. F11 reveals its role in alginate utilization.

Mar Genomics

March 2025

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China. Electronic address:

Alginate, mainly produced by brown algae, is an important polysaccharide that supports the growth of marine bacteria. Vreelandella sp. F11 is a Gram-negative and aerobic marine bacterium, which was isolated from the brown algae sample collected from the Weihai coast, the Yellow Sea, China.

View Article and Find Full Text PDF

Complete genome sequence of Vreelandella sp. SM1641, a marine exopolysaccharide-producing bacterium isolated from deep-sea hydrothermal sediment of the Southwest Indian Ocean.

Mar Genomics

March 2025

College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China. Electronic address:

Vreelandella sp. SM1641 was isolated from the hydrothermal vent sediment of the southwest Indian Ocean at a water depth of 2519 m. The complete genome sequence of strain SM1641 was analyzed to understand its metabolic capacities and biosynthesis potential of natural products in this study.

View Article and Find Full Text PDF

The ligninolytic catalytic network reveals the importance of auxiliary enzymes in lignin biocatalysts.

Proc Natl Acad Sci U S A

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.

Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!