Regulation of RNA polymerase II transcription is critical for the proper development, differentiation, and growth of an organism. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters encompass the RNA start site and consist of functional elements such as the TATA box, initiator, and downstream core promoter element (DPE), which confer specific properties to the core promoter. We have previously discovered that Drosophila Caudal, which is a master regulator of genes involved in development and differentiation, is a DPE-specific transcriptional activator. Here, we show that the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4) are also preferential core promoter transcriptional activators. To elucidate the mechanism that enables Caudal to preferentially activate DPE transcription, we performed structure-function analysis. Using a systematic series of deletion mutants (all containing the intact DNA-binding homeodomain) we discovered that the C-terminal region of Caudal contributes to the preferential activation of the fushi tarazu (ftz) Caudal target gene. Furthermore, the region containing both the homeodomain and the C terminus of Caudal was sufficient to confer core promoter-preferential activation to the heterologous GAL4 DNA-binding domain. Importantly, we discovered that Drosophila CREB-binding protein (dCBP) is a co-activator for Caudal-regulated activation of ftz. Strikingly, dCBP conferred the ability to preferentially activate the DPE-dependent ftz reporter to mini-Caudal proteins that were unable to preferentially activate ftz transcription themselves. Taken together, it is the unique combination of dCBP and Caudal that enables the co-activation of ftz in a core promoter-preferential manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498068PMC
http://dx.doi.org/10.1074/jbc.M114.632109DOI Listing

Publication Analysis

Top Keywords

core promoter
16
core promoter-preferential
12
preferentially activate
12
structure-function analysis
8
core
8
promoter-preferential activation
8
rna polymerase
8
development differentiation
8
discovered drosophila
8
caudal
7

Similar Publications

Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated.

View Article and Find Full Text PDF

Purpose Of The Review: This review aims to explore the pivotal role of long non-coding RNAs (lncRNAs) as epigenetic regulators in the pathogenesis of multiple myeloma (MM). Additionally, we have portrayed the dual role of lncRNAs in the epigenetic landscape of MM pathobiology.

Recent Findings: In MM, lncRNAs are pivotal for proliferation, progression, and drug resistance by acting as miRNA sponges, regulating mRNA activity through microRNA recognition elements (MREs).

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV), a neuroinvasive and neurovirulent orthoflavivirus, can be prevented in humans with the SA14-14-2 vaccine, a live-attenuated version derived from the wild-type SA14 strain. To determine the viral factors responsible for the differences in pathogenicity between SA14 and SA14-14-2, we initially established a reverse genetics system that includes a pair of full-length infectious cDNAs for both strains. Using this cDNA pair, we then systematically exchanged genomic regions between SA14 and SA14-14-2 to generate 20 chimeric viruses and evaluated their replication capability in cell culture and their pathogenic potential in mice.

View Article and Find Full Text PDF

ASH2L-Mediated H3K4 Methylation and Nephrogenesis.

J Am Soc Nephrol

January 2025

Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Background: Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and chronic kidney disease later in life. Prior work has implicated histone modifications in regulating kidney lineage-specific gene transcription and nephron endowment. Our earlier study suggested that ASH2L, a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development.

View Article and Find Full Text PDF

Genomic Diversity and Virulence Factors of Isolated from Healthy and Necrotic Enteritis-Affected Broiler Chicken Farms in Quebec Province.

Microorganisms

December 2024

Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada.

Avian necrotic enteritis due to the Gram-positive bacterium has re-emerged following the ban on antibiotic growth promoters in many poultry producing countries. The limited number of previous studies has left important gaps in our understanding of the genetic diversity and virulence traits of the pathogen. To address these knowledge gaps, in this study, we sequenced the genomes of 41 isolates recovered from commercial broiler chicken flocks in Quebec, Canada, including isolates from healthy birds and those affected by necrotic enteritis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!