Background: Previously published reports indicated that some enzymes of the central carbon metabolism (CCM), particularly those involved in glycolysis and the tricarboxylic acid cycle, may contribute to regulation of DNA replication. However, vast majority of such works was performed with the use of cancer cells, in the light of carcinogenesis. On the other hand, recent experiments conducted on bacterial models provided evidence for the direct genetic link between CCM and DNA replication. Therefore, we asked if silencing of genes coding for glycolytic and/or Krebs cycle enzymes may affect the control of DNA replication in normal human fibroblasts.

Results: Particular genes coding for these enzymes were partially silenced with specific siRNAs. Such cells remained viable. We found that silencing of certain genes resulted in either less efficient or delayed enterance to the S phase. This concerned following genes: HK2, PFKM, TPI, GAPDH, ENO1, LDHA, CS1, ACO2, SUCLG2, SDHA, FH and MDH2. Decreased levels of expression of HK2, GADPH, CS1, ACO2, FH and MDH2 caused also a substantial impairment in DNA synthesis efficiency.

Conclusions: The presented results illustrate the complexity of the influence of genes coding for enzymes of glycolysis and the tricarboxylic acid cycle on the control of DNA replication in human fibroblasts, and indicate which of them are especially important in this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446904PMC
http://dx.doi.org/10.1186/s12860-015-0062-8DOI Listing

Publication Analysis

Top Keywords

genes coding
16
dna replication
16
silencing genes
12
coding enzymes
12
glycolysis tricarboxylic
12
tricarboxylic acid
12
acid cycle
12
involved glycolysis
8
human fibroblasts
8
control dna
8

Similar Publications

Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.

View Article and Find Full Text PDF

Transposable elements (TEs) are significant drivers of genome evolution, yet their recent dynamics and impacts within and among species, as well as the roles of host genes and non-coding RNAs in the transposition process, remain elusive. With advancements in large-scale pan-genome sequencing and the development of open data sharing, large-scale comparative genomics studies have become feasible. Here, we performed complete de novo TE annotations and identified active TEs in 310 plant genome assemblies across 119 species and seven crop populations.

View Article and Find Full Text PDF

We present the complete mitochondrial genome of from China. The mitogenome of is circular, AT-rich (75.3%), and 15,898 bp in length.

View Article and Find Full Text PDF

Alternative splicing is essential for the generation of various protein isoforms that are involved in cell differentiation and tissue development. In addition to internal coding exons, alternative splicing affects the exons with translation initiation codons; however, little is known about these exons. Here, we performed a systematic classification of human alternative exons using coding information.

View Article and Find Full Text PDF

We describe the phenotypic and genotypic spectrum of patients with vascular anomaly (VA) in a paediatric multi-disciplinary VA clinic. We measured the clinical utility of genotyping by comparing pre and posttest diagnosis and management. A 46-month retrospective analysis occurred for 250 patients offered genetic testing in the VA clinic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!