Insect trypanosomatids are inhabitants of the insect digestive tract. These parasites can be either monoxenous or dixenous. Plant trypanosomatids are known as insect trypanosomatids once they and are transmitted by phytophagous insects. Such parasites can be found in latex, phloem, fruits and seeds of many plant families. Infections caused by these pathogens are a major cause of serious economic losses. Studies by independent groups have demonstrated the metabolic flow of lipids from the vertebrate host to trypanosomatids. This mechanism is usually present when parasites possess an incomplete de novo lipid biosynthesis pathway. Here, we show that both insect trypanosomatids Phytomonas françai and Leptomonas wallacei incorporate (3)H-palmitic acid and inorganic phosphate. These molecules are used for lipid biosynthesis. Moreover, we have isolated the main hemolymphatic lipoprotein, Lipophorin (Lp) from Oncopeltus fasciatus, the natural insect vector of such parasites. Both parasites were able to incorporate Lp to be utilized both as a lipid and protein source for their metabolism. Also, we have observed the presence of Lp binding sites in the membrane of a parasite. In conclusion, we believe that the elucidation of trypanosomatid metabolic pathways will lead to a better understanding of parasite-host interactions and the identification of novel potential chemotherapy targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.protis.2015.04.003 | DOI Listing |
Pathogens
December 2024
Centro de Medicina Tropical, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
The Trypanosomatidae family encompasses around 24 genera of unicellular protozoans, many of which are transmitted by various hematophagous arthropods, particularly members of the Orders Diptera and Hemiptera. Fleas and ticks-an understudied group of ectoparasites-have been shown to be hosts of a wide and crescent variety of trypanosomatid species. Further, fleas and ticks of companion animals have been particularly neglected in trypanosomatid surveillance despite the proximity to human populations and the anthropophagous habits of many of these arthropods, which can potentially act as vectors of zoonotic trypanosomatids.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
December 2024
Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil.
Background: Strigomonas culicis is a monoxenic trypanosomatid parasite of insects that naturally contains an endosymbiotic bacterium. The aposymbiotic strain can be obtained, making this strain a model for evolutive research about organelle origins. In addition, S.
View Article and Find Full Text PDFZootaxa
June 2024
Laboratório de Biologia de Insetos; Universidade Federal Fluminense; Niterói/RJ; Brazil.
Blastocrithidia triatomae is a monoxenic trypanosomatid parasite of triatomines, sharing the same insect vectors with Trypanosoma cruzi Chagas, 1909 and T. rangeli Tejera, 1920. It is known to cause a complex syndrome in insects which induces severe metabolic disorders and increasing in mortality rates.
View Article and Find Full Text PDFParasitology
November 2024
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México.
The 17-subunit RNA polymerase III (RNAP III) synthesizes essential untranslated RNAs such as tRNAs and 5S rRNA. In yeast and vertebrates, subunit C82 forms a stable subcomplex with C34 and C31 that is necessary for promoter-specific transcription initiation. Little is known about RNAP III transcription in trypanosomatid parasites.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
USDA-ARS Bee Research Laboratory, 10300 Baltimore Ave, BARC-East Bldg. 306 Rm 313, Beltsville, MD 20705, USA.
Lotmaria passim is a ubiquitous trypanosomatid parasite of honey bees nestled within the medically important subfamily Leishmaniinae. Although this parasite is associated with honey bee colony losses, the original draft genome-which was completed before its differentiation from the closely related Crithidia mellificae-has remained the reference for this species despite lacking improvements from newer methodologies. Here, we report the updated sequencing, assembly, and annotation of the BRL-type (Bee Research Laboratory) strain (ATCC PRA-422) of Lotmaria passim.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!