This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open-circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n-hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2-5.6%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201500979 | DOI Listing |
Chemistry
December 2024
Indian Institute of Technology Guwahati, Dept. of Chemistrty, North Guwahati, 781039, Guwahati, INDIA.
Bromine is a significant environmental threat due to its corrosive nature and contribution to ozone layer depletion. It often coexists with iodine and forms interhalogen complexes (IBr), which require an effective and selective bromine adsorption strategy. Leveraging the electrophilic nature of bromine, we designed an electron-rich thiophene-based porous organic polymer (POF-2).
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Chemistry, Faculty of Science, Masaryk University Kotlářská 2 CZ 611 37 Brno Czech Republic
We report the design, synthesis, electrochemical, UV-vis, fluorescence, and computational study of nine π-linked donor-acceptor (D-π-A) chromophores. The series of novel compounds comprises a terphenyl, terthiophene, or 2,5-diphenyl thiophene linker, with one electron-donating group (methyl or ,-diethyl) and one electron-withdrawing group (nitrone, formyl, or dicyanovinyl) at opposite ends of the molecule. The HOMO-LUMO gaps were determined cyclic voltammetry and found to correspond well to DFT-calculated values.
View Article and Find Full Text PDFThiophene-based nanoparticles (TNPs) are promising therapeutic and imaging agents. Here, using an innovative phage-templated synthesis, a strategy able to bypass the current limitations of TNPs in nanomedicine applications is proposed. The phage capsid is decorated with oligothiophene derivatives, transforming the virus in a 1D-thiophene nanoparticle (1D-TNP).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P.R. China.
Tin halide perovskites are the most promising candidate materials for lead-free perovskite solar cells (PSCs) thanks to their low toxicity and ideal band gap energies. The introduction of 2D/3D mixed perovskite phases in tin-based PSCs (TPSCs) has proven to be the most effective approach to improving device efficiency and stability. However, a 2D perovskite phase normally shows relatively low carrier mobility, which will be unfavorable for carrier transfer in the devices.
View Article and Find Full Text PDFSmall
December 2024
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA.
Hybrid metal halide perovskite (MHP) materials, while being promising for photovoltaic technology, also encounter challenges related to material stability. Combining 2D MHPs with 3D MHPs offers a viable solution, yet there is a gap in the understanding of the stability among various 2D materials. The mechanical, ionic, and environmental stability of various 2D MHP ligands are reported, and an improvement with the use of a quater-thiophene-based organic cation (4TmI) that forms an organic-semiconductor incorporated MHP structure is demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!