MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy.

Brain Topogr

Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Duff Medical Building, 3775, rue University, Room 316, Montreal, QC, H3A 2B4, Canada.

Published: November 2015

The purpose of this study is to develop and quantitatively assess whether fusion of EEG and MEG (MEEG) data within the maximum entropy on the mean (MEM) framework increases the spatial accuracy of source localization, by yielding better recovery of the spatial extent and propagation pathway of the underlying generators of inter-ictal epileptic discharges (IEDs). The key element in this study is the integration of the complementary information from EEG and MEG data within the MEM framework. MEEG was compared with EEG and MEG when localizing single transient IEDs. The fusion approach was evaluated using realistic simulation models involving one or two spatially extended sources mimicking propagation patterns of IEDs. We also assessed the impact of the number of EEG electrodes required for an efficient EEG-MEG fusion. MEM was compared with minimum norm estimate, dynamic statistical parametric mapping, and standardized low-resolution electromagnetic tomography. The fusion approach was finally assessed on real epileptic data recorded from two patients showing IEDs simultaneously in EEG and MEG. Overall the localization of MEEG data using MEM provided better recovery of the source spatial extent, more sensitivity to the source depth and more accurate detection of the onset and propagation of IEDs than EEG or MEG alone. MEM was more accurate than the other methods. MEEG proved more robust than EEG and MEG for single IED localization in low signal-to-noise ratio conditions. We also showed that only few EEG electrodes are required to bring additional relevant information to MEG during MEM fusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600479PMC
http://dx.doi.org/10.1007/s10548-015-0437-3DOI Listing

Publication Analysis

Top Keywords

eeg meg
24
eeg
8
meeg data
8
mem framework
8
better recovery
8
spatial extent
8
data mem
8
fusion approach
8
eeg electrodes
8
electrodes required
8

Similar Publications

Beyond awareness: the binding of reflexive mechanisms with the conscious mind: a perspective from default space theory.

Front Hum Neurosci

December 2024

Charitable Medical Healthcare Foundation, Augusta, GA, United States.

How do reflexes operate so quickly with so much multimodal information on the environment? How might unconscious processes help reveal the nature of consciousness? The Default Space Theory of Consciousness (DST) offers a novel way to interpret these questions by describing how sensory inputs, cognitive functions, emotional states, and unconscious processes are integrated by a single unified internal representation. Recent developments in neuroimaging and electrophysiology, such as fMRI, EEG, and MEG, have improved our knowledge of the brain mechanisms that underpin the conscious mind and have highlighted the importance of neural oscillations and sensory integration in its formation. In this article, we put forth a perspective on an underresearched relationship of reflexes with the dynamic character of consciousness and suggest that future research should focus on the interplay of the unconscious processes of reflexes and correlates of the contents of consciousness to better understand its nature.

View Article and Find Full Text PDF

Objective: Non-invasive neuromodulation techniques, particularly transcranial direct current stimulation (tDCS), are promising for drug-resistant epilepsy (DRE), though the mechanisms of their efficacy remain unclear. This study aims to (i) investigate tDCS neurophysiological mechanisms using a personalized multichannel protocol with magnetoencephalography (MEG) and (ii) assess post-tDCS changes in brain connectivity, correlating them with clinical outcomes.

Methods: Seventeen patients with focal DRE underwent three cycles of tDCS over five days, each consisting of 40-minute stimulations targeting the epileptogenic zone (EZ) identified via stereo-EEG.

View Article and Find Full Text PDF

From behavioral synchrony to language and beyond.

Front Integr Neurosci

December 2024

Temple Infant and Child Laboratory, Temple University, Philadelphia, PA, United States.

Decades of research on joint attention, coordinated joint engagement, and social contingency identify caregiver-child interaction in infancy as a foundation for language. These patterns of early behavioral synchrony contribute to the structure and connectivity of the brain in the temporoparietal regions typically associated with language skills. Thus, children attune to their communication partner and subsequently build cognitive skills directly relating to comprehension and production of language, literacy skills, and beyond.

View Article and Find Full Text PDF

Objective: Electroencephalography (EEG) and Magnetoencephalography (MEG) are widely used non-invasive techniques in clinical and cognitive neuroscience. However, low spatial resolution measurements, partial brain coverage by some sensor arrays, as well as noisy sensors could result in distorted sensor topographies resulting in inaccurate reconstructions of underlying brain dynamics. Solving these problems has been a challenging task, This paper proposes a robust framework based on electromagnetic source imaging for interpolation of unknown or poor quality EEG/MEG measurements.

View Article and Find Full Text PDF

The gut microbiota emerged as a potential modulator of brain connectivity in health and disease. This systematic review details current evidence on the gut-brain axis and its influence on brain connectivity. The initial set of studies included 532 papers, updated to January 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!