In wireless sensor networks, filter-based top- query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors' readings and declines in the overall range of all the readings. In this work, a random walk-based top- query approach called RWTQ and a directed walk-based top- query approach called DWTQ are proposed. At the beginning of a top- query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the "right" way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507629 | PMC |
http://dx.doi.org/10.3390/s150612273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!