The β hemoglobinopathies [β-thalassemia (β-thal) and structural hemoglobin (Hb) variants such as Hb S (HBB: c.20A > T) and Hb E (HBB: c.79G > A)] are among the most common inherited diseases worldwide. In Tunisia, due to the high prevalence of consanguineous marriages, the recurrent risk of this disease is high. The average prevalence of hemoglobinopathies is 4.48%, reaching 12.50% in some focus regions. The molecular investigations on thalassemia contributed to establishing the spectrum of mutations in the Tunisian population. The total number of HBB gene mutations identified was 24. The two most frequent mutations, codon 39 (C > T) (HBB: c.118C > T) and IVS-I-110 (G > A) (HBB: c.93-21G > A) accounted for 70.0% of the total encountered β-thal cases. These two mutations together with IVS-I-2 (T > G) (HBB: c.92 + 2T > G) and the Hb S variant account for more than 90.0% of all HBB genetic variants in Tunisia. Thus, developing rapid, inexpensive and reliable mutation-specific molecular diagnostic assays targeting our Tunisian populations is our aim to facilitate routine detection of hemoglobinopathies. In this report, we describe the successful application of the multiplex minisequencing assay as an alternative strategy for genetic diagnosis of HBB gene disorders in Tunisia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03630269.2015.1041605 | DOI Listing |
Mol Biol Rep
January 2025
Department of Zoology, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
Background: This study aimed to develop and validate a targeted next-generation sequencing (NGS) panel along with a data analysis algorithm capable of detecting single-nucleotide variants (SNVs) and copy number variations (CNVs) within the beta-globin gene cluster. The aim was to reduce the turnaround time in conventional genotyping methods and provide a rapid and comprehensive solution for prenatal diagnosis, carrier screening, and genotyping of β-thalassemia patients.
Methods And Results: We devised a targeted NGS panel spanning an 80.
Background: This study aimed to evaluate the efficacy of third-generation sequencing (TGS) and a thalassemia (Thal) gene diagnostic kit in identifying Thal gene mutations.
Methods: Blood samples (n = 119) with positive hematology screening results were tested using polymerase chain reaction (PCR)-based methods and TGS on the PacBio-Sequel-II-platform, respectively.
Results: Out of the 119 cases, 106 cases showed fully consistent results between the two methods, with TGS identified HBA1/2 and HBB gene mutations in 82 individuals.
Background: Hemoglobin G-Siriraj is a rare hemoglobin variant caused by a β-globin gene mutation (HBB: c.22G>A). The focus of this paper is aimed mainly at the chromatographic and electrophoretic properties of hemoglobin G-Siriraj for a presumptive identification.
View Article and Find Full Text PDFHemoglobin
January 2025
Precision Medical Lab Center, People's Hospital of Yangjiang, Yangjiang, Guangdong, People's Republic of China.
This study presents the hematological and genetic analysis of a child with severe β-thalassemia harboring triple heterozygous mutations. The child, diagnosed with anemia at the age of 1 year, became transfusion-dependent and maintained a hemoglobin level of 72.00-84.
View Article and Find Full Text PDFBackground: Recent reports suggest increased myocardial iNOS expression leads to excessive protein -nitrosylation, contributing to the pathophysiology of HFpEF. However, the relationship between NO bioavailability, dynamic regulation of protein -nitrosylation by trans- and de-nitrosylases, and HFpEF pathophysiology has not been elucidated. Here, we provide novel insights into the delicate interplay between NO bioavailability and protein -nitrosylation in HFpEF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!