In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long noncoding RNAs in melanoma progression. We hypothesized that copy number alterations (CNAs) of intergenic nonprotein-coding domains could help identify long intergenic noncoding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 (cancer susceptibility candidate 15) lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and upregulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC (American Joint Committee on Cancer) stage III lymph node metastasis. Moreover, small interfering RNA (siRNA) knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567947PMC
http://dx.doi.org/10.1038/jid.2015.200DOI Listing

Publication Analysis

Top Keywords

melanoma progression
12
metastatic melanoma
12
melanoma
10
long intergenic
8
intergenic noncoding
8
phenotype switching
8
noncoding rnas
8
associated metastatic
8
casc15 levels
8
proliferative invasive
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!