Knowing the physicochemical properties of a material is of great importance to design and utilize it in a suitable way. In this paper, we conduct a comprehensive survey of photoluminescence spectra, localized cathodoluminescence, temperature-dependent luminescence efficiency, and applications of Eu(2+)-doped Sr0.5Ba0.5Si2O2N2 in solid-state lighting. This phosphor exhibits a broad emission band with a maximum at 560-580 nm and a full-width at half maximum of 92-103 nm upon blue light excitation, whereas a dual-band emission (i.e., 470 nm and 550 nm) is observed under electron beam irradiation due to perhaps the intergrowth of BaSi2O2N2:Eu(2+) and Sr0.5+σBa0.5-σSi2O2N2:Eu(2+) in each phosphor particle. Under 450 nm blue light irradiation, this yellow phosphor exhibits excellent luminescence properties with absorption, internal and external efficiencies of 83.2, 87.7 and 72.6%, respectively. Furthermore, it also possesses high thermal stability, with the quantum efficiency being decreased by only 4.2% at 150 °C and a high quenching temperature of 450 °C. High-efficiency white LEDs using the title phosphor have a luminous efficacy, color temperature and color rendition of ∼120 lm W(-1), 6000 K and 61, respectively, validating its suitability for use in solid-state white lighting.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp01860aDOI Listing

Publication Analysis

Top Keywords

yellow phosphor
8
quantum efficiency
8
thermal stability
8
white leds
8
phosphor exhibits
8
blue light
8
phosphor
5
europiumii-activated oxonitridosilicate
4
oxonitridosilicate yellow
4
phosphor excellent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!