Background: Microbiological contamination or tne air and the acquisition of the antibiotic resistance by pathogenic bacteria is a growing phenomenon that has a substantial impact on the quality of our health. This problem applies mainly to public areas where we spend a large part of our lives. This study was focused on the microbiological analysis of the air in some kindergartens and antibiotic resistance of bacteria of the Stephylococcus spp. genus. The identification of the isolated mould fungi has been also made.

Material And Methods: Air samples were collected from classrooms in the seasonal cycle in the mornings and afternoons using 2 methods, sedimentation and impact. Air samples collected outside the kindergartens served as controls. Air quality assessments were based on the groups of indicator microorganisms, according to Polish standards. The susceptibility of isolated staphylococci was assessed with the disc-diffusion method, using 8 different classes of antibiotics, in line with the recommendations of the European Committee on Antimicrobial Susceptibility Testing (EUCAST).

Results: The analyses show that, regardless of the method, the total number of heterothropic bacteria and staphylococci in the air of the analyzed kindergartens exceeded the allowable limits. There was no air-pollution with the fungal infection. Based on the antibiogram, it was found that Staphylococcus spp. strains showed the highest sensitivity to chloramphenicol and the lowest to penicillin and gentamicin. Among the fungi moulds of the genus Cladosporium predominated.

Conclusions: The results of the analyses highlight the need for regular health checks and further research to help identify biological factors that may significantly affect the quality of health of people living in public spaces.

Download full-text PDF

Source

Publication Analysis

Top Keywords

antibiotic resistance
12
air quality
8
kindergartens antibiotic
8
resistance bacteria
8
staphylococcus spp
8
quality health
8
air samples
8
samples collected
8
air
6
[microbiological air
4

Similar Publications

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

Detection and characterization of pathogenic Bacillus haynesii from Tribulus terrestris extract: ways to reduce its levels.

Braz J Microbiol

January 2025

Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.

Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.

View Article and Find Full Text PDF

Transition metal complexes: next-generation photosensitizers for combating Gram-positive bacteria.

Future Med Chem

January 2025

Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R., China.

The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria.

View Article and Find Full Text PDF

Draft genome sequencing of a multidrug-resistant strain MBBL2 isolated from mastitic cow milk.

Microbiol Resour Announc

January 2025

Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh.

Milk from cows with mastitis is a primary source of bacteria harboring antibiotic resistance genes (ARGs), including . We present the genome sequence of strain MBBL2 isolated from mastitic cow milk, which contains numerous ARGs and virulence-associated genes potentially pathogenic to humans.

View Article and Find Full Text PDF

Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!