Gene electrotransfer enhanced by nanosecond pulsed electric fields.

Mol Ther Methods Clin Dev

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA.

Published: May 2015

The impact of nanosecond pulsed electric fields (nsPEFs) on gene electrotransfer has not been clearly demonstrated in previous studies. This study was conducted to evaluate the influence of nsPEFs on the delivery of plasmids encoding luciferase or green fluorescent protein and subsequent expression in HACAT keratinocyte cells. Delivery was performed using millisecond electric pulses (msEPs) with or without nsPEFs. In contrast to reports in the literature, we discovered that gene expression was significantly increased up to 40-fold by applying nsPEFs to cells first followed by one msEP but not in the opposite order. We demonstrated that the effect of nsPEFs on gene transfection was time restricted. The enhancement of gene expression occurred by applying one msEP immediately after nsPEFs and reached the maximum at posttreatment 5 minutes, slightly decreased at 15 minutes and had a residual effect at 1 hour. It appears that nsPEFs play a role as an amplifier without changing the trend of gene expression kinetics due to msEPs. The effect of nsPEFs on cell viability is also dependent on the specific pulse parameters. We also determined that both calcium independent and dependent mechanisms are involved in nsPEF effects on gene electrotransfer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362372PMC
http://dx.doi.org/10.1038/mtm.2014.43DOI Listing

Publication Analysis

Top Keywords

gene electrotransfer
12
gene expression
12
nanosecond pulsed
8
pulsed electric
8
electric fields
8
nspefs
8
nspefs gene
8
mseps nspefs
8
gene
7
electrotransfer enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!