Objective: Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes.
Approach: Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg(-1). The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation.
Main Results: Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals.
Significance: Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510031 | PMC |
http://dx.doi.org/10.1088/1741-2560/12/4/046002 | DOI Listing |
Biomaterials
January 2025
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States. Electronic address:
Intracortical microelectrodes (IMEs) are essential for neural signal acquisition in neuroscience and brain-machine interface (BMI) systems, aiding patients with neurological disorders, paralysis, and amputations. However, IMEs often fail to maintain robust signal quality over time, partly due to neuroinflammation caused by vascular damage during insertion. Platelet-inspired nanoparticles (PIN), which possess injury-targeting functions, mimic the adhesion and aggregation of active platelets through conjugated collagen-binding peptides (CBP), von Willebrand Factor-binding peptides (VBP), and fibrinogen-mimetic peptides (FMP).
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.
View Article and Find Full Text PDFJ Neural Eng
December 2024
Department of Radiology, University of Pittsburgh, 203 Lothrop St, EEI Suite 700, Pittsburgh, PA 15213, United States of America.
. Intracortical microelectrode arrays often fail to deliver reliable signal quality over chronic recordings, and the effect of an implanted recording array on local neural circuits is not completely understood..
View Article and Find Full Text PDFJ Neurosurg
December 2024
Departments of1Neurological Surgery.
Precise anatomical implantation of a microelectrode array is fundamental for successful brain-computer interface (BCI) surgery, ensuring high-quality, robust signal communication between the brain and the computer interface. Robotic neurosurgery can contribute to this goal, but its application in BCI surgery has been underexplored. Here, the authors present a novel robot-assisted surgical technique to implant rigid intracortical microelectrode arrays for the BCI.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Neurological Surgery, University of California Davis, Davis, CA, USA.
Decoding neural activity from ventral (speech) motor cortex is known to enable high-performance speech brain-computer interface (BCI) control. It was previously unknown whether this brain area could also enable computer control via neural cursor and click, as is typically associated with dorsal (arm and hand) motor cortex. We recruited a clinical trial participant with ALS and implanted intracortical microelectrode arrays in ventral precentral gyrus (vPCG), which the participant used to operate a speech BCI in a prior study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!