Caveolae are cholesterol-rich plasma membrane invaginations that are found in a plethora of cell types. They play many roles including signal transduction, endocytosis, and mechanoprotection. The most critical protein in caveolae is the integral membrane protein, caveolin, which has been shown to be necessary for caveolae formation, and governs the major functions attributed to caveolae. Caveolin is postulated to act as a scaffold in the high molecular weight striated coat that surrounds the caveolar bulb, stabilizing it. Caveolin interacts, both directly and indirectly, with a large number of signaling molecules, and presides over the endocytosis of molecular cargo by caveolae. However, many of the key biophysical aspects of the caveolin protein, its structure, topology, and oligomeric behavior, are just beginning to come to light. Herein is an up-to-date summary and critique of the progress that has been made in understanding caveolin on a molecular and atomic level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.ctm.2015.03.007DOI Listing

Publication Analysis

Top Keywords

caveolin
6
caveolae
6
progress topology
4
topology structure
4
structure oligomerization
4
oligomerization caveolin
4
caveolin building
4
building block
4
block caveolae
4
caveolae caveolae
4

Similar Publications

Deciphering the Seed Size-Dependent Cellular Internalization Mechanism for α-Synuclein Fibrils.

Biochemistry

January 2025

Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds.

View Article and Find Full Text PDF

Abnormal ac4C modification in metabolic dysfunction associated steatotic liver cells.

Sci Rep

January 2025

Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China.

The pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remains unclear due to the complexity of its etiology. The emerging field of the epitranscriptome has shown significant promise in advancing the understanding of disease pathogenesis and developing new therapeutic approaches. Recent research has demonstrated that N4-acetylcytosine (ac4C), an RNA modification within the epitranscriptome, is implicated in progression of various diseases.

View Article and Find Full Text PDF

Ferroptosis plays a role in tumorigenesis by affecting lipid peroxidation and metabolic pathways; however, its prognostic or therapeutic relevance in pancreatic adenocarcinoma (PAAD) remains poorly understood. In this study, we developed a prognostic ferroptosis-related gene (FRG)-based risk model using cohorts of The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), proposing plausible therapeutics. Differentially expressed FRGs between tumors from TCGA-PAAD and normal pancreatic tissues from Genotype-Tissue Expression were analyzed to construct a prognostic risk model using univariate and multivariate Cox regression and LASSO analyses.

View Article and Find Full Text PDF

Background: Bleomycin (BLM), an anticancer medication, can exacerbate pulmonary fibrosis by inducing oxidative stress and inflammation. Anti-inflammatory, anti-fibrotic, and antioxidant properties are exhibited by ganoderic acid A (GAA).

Aim: So, we aim to assess GAA's protective impact on lung fibrosis induced via BLM.

View Article and Find Full Text PDF

Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!