The suitability of nano-structured hydroxyapatite (HAP) for use as a thermoluminescence dosimeter was investigated. HAP samples were synthesized using a hydrolysis method. The formation of nanoparticles was confirmed by X-ray diffraction and average particle size was estimated to be ~30 nm. The glow curve exhibited a peak centered at around 200 °C. The additive dose method was applied and this showed that the thermoluminescence (TL) glow curves follow first-order kinetics due to the non-shifting nature of Tm after different doses. The numbers of overlapping peaks and related kinetic parameters were identified from Tm -Tstop through computerized glow curve deconvolution methods. The dependence of the TL responses on radiation dose was studied and a linear dose response up to 1000 Gy was observed for the samples.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.2949DOI Listing

Publication Analysis

Top Keywords

glow curve
8
thermoluminescence properties
4
properties gamma-irradiated
4
gamma-irradiated nano-structure
4
nano-structure hydroxyapatite
4
hydroxyapatite suitability
4
suitability nano-structured
4
nano-structured hydroxyapatite
4
hydroxyapatite hap
4
hap thermoluminescence
4

Similar Publications

Using the solid-state reaction technique, varied YSiO phosphors activated by europium (Eu) ions at varied concentrations were made at calcination temperatures of 1000 °C and 1250 °C during sintering in an air environment. The XRD technique identified the monoclinic structure, and the FTIR technique was used to analyze the generated phosphors. Photoluminescence emission and excitation patterns were measured using varying concentrations of Eu ions.

View Article and Find Full Text PDF

A glow-curve analysis code was previously developed in C++ to analyze thermoluminescent dosimeter glow curves using automated peak detection while a first-order kinetics model. A newer version of this code was implemented to improve the automated peak detection and curve fitting models. The Stochastic Gradient Descent Algorithm was introduced to replace the prior approach of taking first and second-order derivatives for peak detection.

View Article and Find Full Text PDF

Thermoluminescence of NaF and NaF:Tm phosphors exposed to beta particle irradiation.

Appl Radiat Isot

December 2024

Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apartado Postal 130, Hermosillo, Sonora, 83000, Mexico.

This work reports the synthesis and beta particle excited thermoluminescence (TL) characteristics of NaF and NaF:Tm phosphors synthesized via wet precipitation. The samples were subjected to thermal annealing at 750 °C for 5, 10, and 24 h in an air atmosphere. A sensitization effect is observed in repeated irradiation-TL readout cycles.

View Article and Find Full Text PDF

Characterization of natural soda ash for dosimetry using thermoluminescence technique.

Appl Radiat Isot

December 2024

Department of Physics, University of Botswana, Private Bag UB 0022, Gaborone, Botswana.

Soda ash, due to its various use for industrial applications, is a phosphor likely to be found in the vicinities of radiation facilities where retrospective dosimetry may be required in the unlikely events of radiation accidents/incidents. The ash is therefore a potential material for retrospective dosimetry using luminescence techniques. In this report, the thermoluminescence characteristics of soda ash from Suan pan, Botswana are presented.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored how different heat treatments affected the thermoluminescence (TL) and structure of zinc sulfide (ZnS) samples, revealing that annealing increased the proportion of the hexagonal wurtzite phase.
  • - The best thermoluminescence intensity was found in a sample with 8.2% wurtzite and 91.8% cubic zinc sulfide, with the analysis showing well-formed, aggregated ZnS nanoparticles.
  • - The researchers used advanced techniques to analyze TL glow curves, identifying multiple trapping energy peaks and determining activation energies related to electron traps in the samples.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!