In microtiter plates, conventional online monitoring of biomass concentration based on optical measurements is limited to transparent media: It also cannot differentiate between dead or viable biomass or suspended particles. To address this limitation, this study introduces and validates a new online monitoring setup based on impedance spectroscopy for detecting only viable biomass in 48- and 96-well microtiter plates. The setup was first validated electronically and characterized by determining the cell constants of the measuring geometry. Defined cell suspensions of Ustilago maydis, Hansenula polymorpha, Escherichia coli and Bacillus licheniformis were characterized to find, among other parameters, the most suitable frequency range and the characteristic frequency of β-dispersion for each organism. Finally, the setup was exemplarily applied to monitor the growth of Hansenula polymorpha online. As reference, three different parallel cultures were performed in established cultivation systems. This new online monitoring setup based on impedance spectroscopy is robust and enables precise measurements of microbial biomass concentration. It is promising for future high-throughput applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201400534DOI Listing

Publication Analysis

Top Keywords

impedance spectroscopy
12
microtiter plates
12
viable biomass
12
online monitoring
12
biomass concentration
8
monitoring setup
8
setup based
8
based impedance
8
hansenula polymorpha
8
setup
5

Similar Publications

Objectives: For designing a suitable hydrogel, two crosslinked Alginate/ Carboxymethyl cellulose (Alg/CMC) hydrogel, using calcium chloride (Ca) and glutaraldehyde (GA) as crosslinking agents were synthesized and compared.

Materials And Methods: All samples were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Blood compatibility (BC), Blood clotting index (BCI), weight loss (WL), water absorption (WA), pH, and Electrochemical Impedance Spectroscopy (EIS). Cell viability and cell migration were investigated using the MTT assay and the wound scratch test, respectively.

View Article and Find Full Text PDF

The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.

View Article and Find Full Text PDF

This study delves into the interplay of temperature, composition, tortuosity, and electrostatic interactions on ion diffusion within cation exchange membranes. It explores the temperature dependence (16-60 °C) of the self-diffusion coefficients (SDCs) of Ba and Eu ions within the Nafion 117 cation exchange membrane, particularly in the presence of Na ions. Radiotracer techniques and electrochemical impedance spectroscopy were employed to investigate these SDCs.

View Article and Find Full Text PDF

This study examined the electrodissolution mechanism of five impure sphalerite samples, which differ significantly in purity levels, along with their partially oxidized counterparts in a 0.5 M HSO. Partially oxidized samples were prepared through an incomplete leaching of sphalerite using HSO with Fe(SO).

View Article and Find Full Text PDF

Liquid-liquid phase transitions play a pivotal role in various scientific disciplines and technological applications, ranging from biology to materials science and geophysics. Understanding the behavior of materials undergoing these transitions provides valuable insights into complex systems and their dynamic properties. This review explores the implications of liquid-liquid phase transitions, particularly focusing on the transition between low-density liquid (LDL) and high-density liquid (HDL) phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!