Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A photoelectrochemical (PEC) cell consisting of an n-type CdS single-crystal electrode and a Pt counter electrode with the ruthenium-2,2'-bipyridine complex [Ru(bpy)3](2+/3+) as the redox shuttle in a non-aqueous electrolyte was studied to obtain a higher open-circuit voltage (V(OC)) than the onset voltage for water splitting. A V(OC) of 1.48 V and a short-circuit current (I(SC)) of 3.88 mA cm(-2) were obtained under irradiation by a 300 W Xe lamp with 420-800 nm visible light. This relatively high voltage was presumably due to the difference between the Fermi level of photo-irradiated n-type CdS and the redox potential of the Ru complex at the Pt electrode. The smooth redox reaction of the Ru complex with one-electron transfer was thought to have contributed to the high V(OC) and I(SC). The obtained V(OC) was more than the onset voltage of water electrolysis for hydrogen and oxygen generation, suggesting prospects for application in water electrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201502586 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!