The advent of mesenchymal stem cell (MSC)-based therapies has been an exciting innovation for the treatment of degenerative and inflammatory diseases. However, the surface markers that accurately reflect the self-renewal and differentiation potential of MSCs and their sensitivity to environmental cues remain poorly defined. Here, we studied the role of CD49f in bone marrow MSCs (BMSCs) and the mechanism by which it regulates the behavior of BMSCs under inflammatory conditions. We found that CD49f is preferentially expressed in fetal cells rather than adult cells, CD49f-positive BMSCs possess higher CFU-F formation ability and differentiation potential than CD49f negative cells, and the CD49f expression of BMSCs gradually decreases during in vitro passaging. CD49f knockdown dramatically decreased the differentiation of BMSCs and isoform A was demonstrated to be the main functional form that enhanced the differentiation ability of BMSCs. The influences of inflammatory cytokines on BMSCs revealed that TNF-α downregulated CD49f in BMSCs with impaired differentiation, decreased adhesion to laminins, and increased migration. Moreover, tissue transglutaminase was found to work together with CD49f to regulate the behavior of BMSCs. Finally, we showed that mTOR signaling rather than NF-κB activation mediated CD49f downregulation induced by TNF-α and maintained CD49f homeostasis in BMSCs. Our findings suggest that CD49f is a stemness marker of BMSCs and is tightly correlated with the behavioral changes of BMSCs under inflammatory conditions. These data demonstrate a novel role for CD49f in sensing inflammation through mTOR pathway to further modulate the behavior of MSCs to fulfill the requirements of the body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/stem.2063 | DOI Listing |
An Bras Dermatol
January 2025
School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China; Department of Laboratory Medicine, Chronic Disease Research Center, Medical College, Dalian University, Dalian, China. Electronic address:
Stem Cells Dev
January 2025
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).
View Article and Find Full Text PDFJ Cancer Res Ther
December 2024
Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.
Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive.
Methods: We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC.
J Biomater Appl
January 2025
Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland.
his study aimed to evaluate the effects of the atomic layer deposited hydroxyapatite (ALD-HA) coating of the titanium (Ti) surface on human gingival keratinocyte (HGK) cell adhesion, spreading, viability, and hemidesmosome (HD) formation. Grade 2 square-shaped Ti substrates were used ( = 62). Half of the substrates were ALD-HA coated, while the other half were used as non-coated controls (NC).
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France.
About one in six couples experience fertility problems, and male infertility accounts for about half of these cases. Spermatogenesis originates from a small pool of spermatogonial stem cells (SSCs), which are of interest for the treatment of infertility but remain poorly characterised in humans. Using multiparametric spectral flow cytometric analysis with a 16-colours (16-C) panel of cell markers, we identify novel markers of SSCs and provide insights into unravelling and resolving the heterogeneity of the human spermatogonial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!