NADPH oxidases (NOXs) constitute a family of enzymes generating reactive oxygen species (ROS) and are increasingly recognized as interesting drug targets. Here we investigated the effects of 10 phenothiazine compounds on NOX activity using an extensive panel of assays to measure production of ROS (Amplex red, WST-1, MCLA) and oxygen consumption. Striking differences between highly similar phenothiazines were observed. Two phenothiazines without N-substitution, including ML171, did not inhibit NOX enzymes, but showed assay interference. Introduction of an aliphatic amine chain on the N atom of the phenothiazine B ring (promazine) conferred inhibitory activity toward NOX2, NOX4, and NOX5 but not NOX1 and NOX3. Addition of an electron-attracting substituent in position 2 of the C ring extended the inhibitory activity to NOX1 and NOX3, with thioridazine being the most potent inhibitor. In contrast, the presence of a methylsulfoxide group at the same position (mesoridazine) entirely abolished NOX-inhibitory activity. A cell-free NOX2 assay suggested that inhibition by N-substituted phenothiazines was not due to competition with NADPH. A functional implication of NOX-inhibitory activity of thioridazine was demonstrated by its ability to block redox-dependent myofibroblast differentiation. Our results demonstrate that NOX-inhibitory activity is not a common feature of all antipsychotic phenothiazines and that substitution on the B-ring nitrogen is crucial for the activity, whereas that on the second position of the C ring modulates it. Our findings contribute to a better understanding of NOX pharmacology and might pave the path to discovery of more potent and selective NOX inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.023 | DOI Listing |
Free Radic Biol Med
December 2020
Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea. Electronic address:
NADPH oxidases (NOXs) are comprised of different isoforms, NOX1 to 5 and Duox1 and 2, and they trigger diabetic nephropathy (DN) in the patients with diabetes mellitus. Recently, it was shown that, compared to the other isoforms, the expression of NOX5 was increased in the patients with DN and, NOX5 has been suggested to be important in the development of therapeutic agents. The effect of pan-NOX inhibition by APX-115 has also been investigated in type 2 diabetic mice.
View Article and Find Full Text PDFRedox Biol
September 2019
Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland. Electronic address:
Background: NADPH oxidases (NOX) are a family of flavoenzymes that catalyze the formation of superoxide anion radical (O) and/or hydrogen peroxide (HO). As major oxidant generators, NOX are associated with oxidative damage in numerous diseases and represent promising drug targets for several pathologies. Various small molecule NOX inhibitors are used in the literature, but their pharmacological characterization is often incomplete in terms of potency, specificity and mode of action.
View Article and Find Full Text PDFMethods Mol Biol
January 2020
Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
A growing appreciation of NADPH oxidases (NOXs) as mediators of fundamental physiological processes and as important players in myriad diseases has led many laboratories on a search for specific inhibitors to help dissect the role in a given pathway or pathological condition. To date, there are only a few available inhibitors with a demonstrated specificity for a given isozyme. Among those, peptidic inhibitors have the advantage of being designed to target very specific protein-protein interactions that are essential for NOX activity.
View Article and Find Full Text PDFPhytomedicine
November 2016
Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2. Electronic address:
Background: Many plant-derived chemicals have been studied for their potential benefits in ailments including inflammation, cancer, neurodegeneration, and cardiovascular disease. The health benefits of phytochemicals are often attributed to the targeting of reactive oxygen species (ROS). However, it is not always clear whether these agents act directly as antioxidants to remove ROS, or whether they act indirectly by blocking ROS production by enzymes such as NADPH oxidase (NOX) enzymes, or by influencing the expression of cellular pro- and anti- oxidants.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2016
From the Diabetic Complications Laboratory (S.P.G., E.D.M., K.K., P.C., M.E.C., K.A.M.J.-D.), Epigenetics Laboratory (J.O., A.E.-O.), and Diabetes and Dyslipidaemia Group (A.C.C.), Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Faculty of Medicine, Monash University, Melbourne, Australia (S.P.G., E.D.M., K.A.M.J.-D.); Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands (E.A.L.B.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); and Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Faculty of Medicine, Health, and Life Science, Maastricht University, Maastricht, The Netherlands (H.H.H.W.S.).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!