We have recently demonstrated that methyl p-hydroxyphenyllactate (MeHPLA) is the endogenous ligand for nuclear type II binding sites in the rat uterus and other estrogen target and non-target tissues. MeHPLA binds to nuclear type II binding sites with a very high binding affinity (Kd approximately 4-5 nM), blocks uterine growth in vivo, and inhibits MCF-7 human breast cancer cell growth in vitro. Conversely, the free acid (p-hydroxyphenyllactic acid, HPLA) interacts with type II binding sites with a much lower affinity (Kd approximately 200 nM) and does not inhibit estrogen-induced uterine growth in vivo or MCF-7 cell growth in vitro. On the basis of these observations, we suggested that one way that estrogen may override MeHPLA inhibition of rat uterine growth may be to stimulate esterase hydrolysis of MeHPLA to HPLA. The present studies demonstrate that the rat uterus does contain an esterase (mol. wt approximately 50,000) which cleaves MeHPLA to HPLA, and that this enzyme is under estrogen regulation. This conclusion is supported by the observations that MeHPLA esterase activity is increased 2-3-fold above controls within 2-4 h following a single injection of estradiol, and is maintained at high levels for 16-24 h following hormone administration. This sustained elevation of MeHPLA esterase activity correlates with estradiol stimulation of true uterine growth and DNA synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-4731(89)90234-3DOI Listing

Publication Analysis

Top Keywords

uterine growth
20
type binding
12
binding sites
12
estrogen regulation
8
methyl p-hydroxyphenyllactate
8
rat uterine
8
nuclear type
8
rat uterus
8
growth vivo
8
cell growth
8

Similar Publications

Maternal cell-free DNA in early pregnancy for preeclampsia screening: a systematic review.

Arch Gynecol Obstet

January 2025

Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel.

Purpose: To quantify the separation between maternal blood cell-free (cf)DNA markers in preeclampsia and unaffected pregnancies and compare with existing markers. This approach has not been used in previous studies.

Methods: Comprehensive systematic literature search of PubMed to identify studies measuring total cfDNA, fetal cf(f)DNA or the fetal fraction (FF) in pregnant women.

View Article and Find Full Text PDF

Caesarean myomectomy in pregnant women with uterine fibroids.

Cochrane Database Syst Rev

January 2025

Liverpool Reviews and Implementation Group, Department of Health Data Science, University of Liverpool, Liverpool, UK.

Rationale: Postpartum haemorrhage, defined as a blood loss of 500 mL or more within 24 hours of birth, is the leading global cause of maternal morbidity and mortality. Uterine fibroids are non-cancerous growths that develop in or around the uterus, and affect an increasing number of women. Caesarean myomectomy is the surgical removal of fibroids during a caesarean section.

View Article and Find Full Text PDF

Sequestration of parasites in the placental vasculature causes increased morbidity and mortality in pregnant compared to non-pregnant patients in malaria- endemic regions. In this study, outbred pregnant CD1 mice with semi allogeneic fetuses were infected with transgenic or mock-inoculated by mosquito bite at either embryonic day (E) 6 (first trimester-equivalent) or 10 (second trimester- equivalent) and compared with non-pregnant females. -infected mosquitoes had greater biting avidity for E10 dams than uninfected mosquitoes, which was not apparent for E6 dams nor non-pregnant females.

View Article and Find Full Text PDF

Background: Uterine injury can cause uterine scarring, leading to a series of complications that threaten women's health. Uterine healing is a complex process, and there are currently no effective treatments. Although our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) promote uterine damage repair, the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!