The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13744-015-0291-8 | DOI Listing |
Microb Pathog
January 2025
Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
Particulate air pollutants, a major air pollution component, are detrimental to human health and a significant risk to wildlife and ecosystems globally. Here we report the effects of particulate pollutant black carbon on the beneficial gut microbiome of important global insect pollinator, the buff-tailed bumblebee (Bombus terrestris). Our data shows that exposure to black carbon particulates alters biofilm structure, gene expression and initial adhesion of beneficial bee gut coloniser, Snodgrassella alvi.
View Article and Find Full Text PDFBMC Vet Res
December 2024
Department of Veterinary Sciences, University of Turin, Grugliasco, Italy.
Background: The inclusion of sustainable protein sources in poultry feed has become essential for improving animal welfare in livestock production. Black soldier fly larvae are a promising solution due to their high protein content and sustainable production. However, most research has focused on fast-growing poultry breeds, while the effects on native breeds, such as the Bianca di Saluzzo, are less explored.
View Article and Find Full Text PDFPLoS One
December 2024
Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, Maryland, United States of America.
The bagrada bug, Bagrada hilaris (Burmeister), is an emerging agricultural pest in the Americas, threatening agricultural production in the southwestern United States, Mexico and Chile, as well as in the Old World (including Africa, South Asia and, more recently, Mediterranean areas of Europe). Substantive transcriptomic sequence resources for this damaging species would be beneficial towards understanding its capacity for developing insecticide resistance, identifying viruses that may be present throughout its population and identifying genes differentially expressed across life stages that could be exploited for biomolecular pesticide formulations. This study establishes B.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Robotics Institute, Beihang University, Beijing 100191, China.
Many flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of using integrated kinematics and aerodynamics is scarce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!