Diet-induced weight loss has been suggested to be harmful to bone health. We conducted a systematic review and meta-analysis (using a random-effects model) to quantify the effect of diet-induced weight loss on bone. We included 41 publications involving overweight or obese but otherwise healthy adults who followed a dietary weight-loss intervention. The primary outcomes examined were changes from baseline in total hip, lumbar spine, and total body bone mineral density (BMD), as assessed by dual-energy X-ray absorptiometry (DXA). Secondary outcomes were markers of bone turnover. Diet-induced weight loss was associated with significant decreases of 0.010 to 0.015 g/cm(2) in total hip BMD for interventions of 6, 12, or 24 (but not 3) months' duration (95% confidence intervals [CIs], -0.014 to -0.005, -0.021 to -0.008, and -0.024 to -0.000 g/cm(2), at 6, 12, and 24 months, respectively). There was, however, no statistically significant effect of diet-induced weight loss on lumbar spine or whole-body BMD for interventions of 3 to 24 months' duration, except for a significant decrease in total body BMD (-0.011 g/cm(2); 95% CI, -0.018 to -0.003 g/cm(2)) after 6 months. Although no statistically significant changes occurred in serum concentrations of N-terminal propeptide of type I procollagen (P1NP), interventions of 2 or 3 months in duration (but not of 6, 12, or 24 months' duration) induced significant increases in serum concentrations of osteocalcin (0.26 nmol/L; 95% CI, 0.13 to 0.39 nmol/L), C-terminal telopeptide of type I collagen (CTX) (4.72 nmol/L; 95% CI, 2.12 to 7.30 nmol/L) or N-terminal telopeptide of type I collagen (NTX) (3.70 nmol/L; 95% CI, 0.90 to 6.50 nmol/L bone collagen equivalents [BCEs]), indicating an early effect of diet-induced weight loss to promote bone breakdown. These data show that in overweight and obese individuals, a single diet-induced weight-loss intervention induces a small decrease in total hip BMD, but not lumbar spine BMD. This decrease is small in comparison to known metabolic benefits of losing excess weight.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.2564DOI Listing

Publication Analysis

Top Keywords

diet-induced weight
24
weight loss
24
overweight obese
12
total hip
12
lumbar spine
12
months' duration
12
systematic review
8
review meta-analysis
8
weight-loss intervention
8
total body
8

Similar Publications

Context: The obesity epidemic parallels an increasing type 1 diabetes incidence, such that westernized diets, containing high fat, sugar and/or protein, through inducing nutrient-induced islet beta-cell stress, have been proposed as contributing factors. The broad-spectrum neutral amino acid transporter (B0AT1), encoded by Slc6a19, is the major neutral amino acids transporter in intestine and kidney. B0AT1 deficiency in C567Bl/6J mice, causes aminoaciduria, lowers insulinemia and improves glucose tolerance.

View Article and Find Full Text PDF

MAP17 is a Novel NASH Progression Biomarker Associated with Macrophage Infiltration, Immunotherapy Response, and Oxidative Stress.

J Inflamm Res

January 2025

Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People's Republic of China.

Background: Nonalcoholic steatohepatitis (NASH) has recently garnered increased attention due to immune infiltration. However, the role of membrane-associated protein 17 (MAP17) in NASH remains unclear, which prompted this study to explore its relationship with immune infiltration and its regulatory mechanisms.

Methods: We employed weighted correlation network analysis (WGCNA) to construct a gene co-expression network aimed at identifying key genes associated with NASH progression.

View Article and Find Full Text PDF

Obesity is a modifiable risk factor for breast cancer. Yet, how obesity contributes to cancer initiation is not fully understood. The goal of this study was to determine if the body mass index (BMI) and metabolic hallmarks of obesity are related to DNA damage in normal breast tissue.

View Article and Find Full Text PDF

Background: The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease.

View Article and Find Full Text PDF

Endothelial Autophagy-related gene 7 Contributes to High Fat Diet-Induced Obesity.

Mol Metab

January 2025

Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294, U.S.A; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294 U.S.A; UAB Comprehensive Diabetes Center. Electronic address:

Objective: Obesity-associated metabolic dysfunction is a major public health concern worldwide. Endothelial dysfunction is a hallmark of metabolic dysfunction, and endothelial cells affect metabolic functions. Because autophagy-related gene 7 (ATG7) is involved in various cellular physiology, we investigated the roles of endothelial cell-ATG7 (EC-ATG7) on high-fat diet-induced obesity and its related metabolic dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!