A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pretreatment of forest residues of Douglas fir by wet explosion for enhanced enzymatic saccharification. | LitMetric

Pretreatment of forest residues of Douglas fir by wet explosion for enhanced enzymatic saccharification.

Bioresour Technol

Bioproducts, Sciences & Engineering Laboratory (BSEL), Washington State University, 2710 University Drive, Richland, WA 99354-1671, USA. Electronic address:

Published: September 2015

The logging and lumbering industry in the Pacific Northwest region generates huge amount of forest residues, offering an inexpensive raw material for biorefineries. Wet explosion (WEx) pretreatment was applied to the recalcitrant biomass to optimize process conditions including temperature (170-190 °C), time (10-30 min), and oxygen loading (0.5-7.5% of DM) through an experimental design. Optimal pH for enzymatic hydrolysis of the optimized samples and a complete mass balance have been evaluated. Results indicated that cellulose digestibility improved in all conditions tested with maximum digestibility achieved at 190 °C, time 30 min, and oxygen loading of 7.5%. Glucose yield at optimal pH of 5.5 was 63.3% with an excellent recovery of cellulose and lignin of 99.9% and 96.3%, respectively. Hemicellulose sugars recovery for xylose and mannose was found to be 69.2% and 76.0%, respectively, indicating that WEx is capable of producing relative high sugar yield even from the recalcitrant forest residues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.05.043DOI Listing

Publication Analysis

Top Keywords

forest residues
12
wet explosion
8
°c time
8
min oxygen
8
oxygen loading
8
pretreatment forest
4
residues douglas
4
douglas fir
4
fir wet
4
explosion enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!