Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An easy-to-make salicylimine (L) bearing an "O-N-O"-coordination site was used as a highly selective fluorescent sensor for Al(3+) and PPi in aqueous solution. Sensor L showed a significant fluorescence enhancement in the presence of Al(3+) over other competitive metal ions. It works based on the Al(3+)-induced formation of a 1 : 1 L-Al(3+) complex, producing a chelation-enhanced fluorescence effect, the fluorescence quantum yield reached 0.59. This L-Al(3+) ensemble is a subsequent fluorescent sensor for PPi due to the strong attraction between Al(3+) and PPi, it can selectively discriminate PPi overcoming the interference of the biological competitors including PO4(3-), ADP and ATP at physiological pH. L and L-Al(3+) exhibit high sensitivity and selectivity for Al(3+) and PPi, the detection limits were found to be as low as 2.94 × 10(-8) M and 2.74 × 10(-7) M, respectively. It was further confirmed that sensor L had potential practical applications through mapping of Al(3+) in live cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt00689a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!