The anti-tumor effects of chemotherapy and radiation are thought to be mediated by triggering G1/S or G2/M cell cycle checkpoints, while spindle poisons, such as paclitaxel, block metaphase exit by initiating the spindle assembly checkpoint. In contrast, we have found that 150 kilohertz (kHz) alternating electric fields, also known as Tumor Treating Fields (TTFields), perturbed cells at the transition from metaphase to anaphase. Cells exposed to the TTFields during mitosis showed normal progression to this point, but exhibited uncontrolled membrane blebbing that coincided with metaphase exit. The ability of such alternating electric fields to affect cellular physiology is likely to be dependent on their interactions with proteins possessing high dipole moments. The mitotic Septin complex consisting of Septin 2, 6 and 7, possesses a high calculated dipole moment of 2711 Debyes (D) and plays a central role in positioning the cytokinetic cleavage furrow, and governing its contraction during ingression. We showed that during anaphase, TTFields inhibited Septin localization to the anaphase spindle midline and cytokinetic furrow, as well as its association with microtubules during cell attachment and spreading on fibronectin. After aberrant metaphase exit as a consequence of TTFields exposure, cells exhibited aberrant nuclear architecture and signs of cellular stress including an overall decrease in cellular proliferation, followed by apoptosis that was strongly influenced by the p53 mutational status. Thus, TTFields are able to diminish cell proliferation by specifically perturbing key proteins involved in cell division, leading to mitotic catastrophe and subsequent cell death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444126 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125269 | PLOS |
bioRxiv
December 2024
Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403.
The Par complex regulates cell polarity in diverse animal cells , but how its localization is restricted to a specific membrane domain remains unclear. We investigated how the tumor suppressor Lethal giant larvae (Lgl) polarizes the Par complex in neural stem cells (NSCs or neuroblasts). In contrast to epithelial cells, where Lgl and the Par complex occupy mutually exclusive membrane domains, Lgl is cytoplasmic when the Par complex is apically polarized in NSCs.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI, USA.
Treatments which inhibit or inactivate Cdk1/cyclin B in metaphase-arrested mammalian cells and budding yeast are described. These treatments induce the cells to exit mitosis and return to interphase, though without chromosome segregation or cytokinesis, and they provide the basis for a method to identify enzymes or other proteins which act "downstream" from Cdk1 inactivation and to elucidate the roles of those proteins in mitotic exit. In this method, inactivation of Cdk1 is combined with inhibition or inactivation of a protein of interest and the effects are observed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb 10000, Croatia.
Cancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane. Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers. However, the role of the poleward flux in supporting mitotic fidelity remains unknown.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Systems Biology, University of Massachusetts Chan Medical School; Worcester, USA.
Identity-specific interphase chromosome conformation must be re-established each time a cell divides. To understand how interphase folding is inherited, we developed an experimental approach that physically segregates mediators of G1 folding that are intrinsic to mitotic chromosomes from cytoplasmic factors. Proteins essential for nuclear transport, RanGAP1 and Nup93, were degraded in pro-metaphase arrested DLD-1 cells to prevent the establishment of nucleo-cytoplasmic transport during mitotic exit and isolate the decondensing mitotic chromatin of G1 daughter cells from the cytoplasm.
View Article and Find Full Text PDFbioRxiv
August 2024
Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403.
Asymmetric cell division (ACD) is a broadly used mechanism for generating cellular diversity. Molecules known as fate determinants are segregated during ACD to generate distinct sibling cell fates, but determinants should not be activated until fate can be specified asymmetrically. Determinants could be activated after cell division but many animal cells complete division long after mitosis ends, raising the question of how activation could occur at mitotic exit taking advantage of the unique state plasticity at this time point.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!