Anatabine is a minor tobacco alkaloid, which is also found in plants of the Solanaceae family and displays a chemical structure similarity with nicotine. We have shown previously that anatabine displays some anti-inflammatory properties and reduces microgliosis and tau phosphorylation in a pure mouse model of tauopathy. We therefore investigated the effects of a chronic oral treatment with anatabine in a transgenic mouse model (Tg PS1/APPswe) of Alzheimer's disease (AD) which displays pathological Aβ deposits, neuroinflammation and behavioral deficits. In the elevated plus maze, Tg PS1/APPswe mice exhibited hyperactivity and disinhibition compared to wild-type mice. Six and a half months of chronic oral anatabine treatment, suppressed hyperactivity and disinhibition in Tg PS1/APPswe mice compared to Tg PS1/APPswe receiving regular drinking water. Tg PS1/APPswe mice also elicited profound social interaction and social memory deficits, which were both alleviated by the anatabine treatment. We found that anatabine reduces the activation of STAT3 and NFκB in the vicinity of Aβ deposits in Tg PS1/APPswe mice resulting in a reduction of the expression of some of their target genes including Bace1, iNOS and Cox-2. In addition, a significant reduction in microgliosis and pathological deposition of Aβ was observed in the brain of Tg PS1/APPswe mice treated with anatabine. This is the first study to investigate the impact of chronic anatabine treatment on AD-like pathology and behavior in a transgenic mouse model of AD. Overall, our data show that anatabine reduces β-amyloidosis, neuroinflammation and alleviates some behavioral deficits in Tg PS1/APPswe, supporting further exploration of anatabine as a possible disease modifying agent for the treatment of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444019 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128224 | PLOS |
J Nat Prod
December 2023
Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
Neuronal cell damage is a major cause of cognitive impairment in Alzheimer's disease (AD). Multiple factors, such as amyloid deposition, tau hyperphosphorylation, and neuroinflammation, can lead to neuronal cell damage. Therefore, the development of multi-target drugs with broad neuroprotective effects may be an effective strategy for the treatment of AD.
View Article and Find Full Text PDFMetabolomics
June 2023
Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China.
Introduction: Accumulation of β-amyloid (Aβ) in neurons of patients with Alzheimer's disease (AD) inhibits the activity of key enzymes in mitochondrial metabolic pathways, triggering mitochondrial dysfunction, which plays an important role in the onset and development of AD. Mitophagy is a process whereby dysfunctional or damaged mitochondria are removed from the cell. Aberrant mitochondrial metabolism may hinder mitophagy, promote autophagosome accumulation, and lead to neuronal death.
View Article and Find Full Text PDFPhytomedicine
January 2023
Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China. Electronic address:
Background: There is no doubt that Alzheimer's disease (AD) is one of the greatest threats facing mankind today. Within the next few decades, Acetylcholinesterase inhibitors (AChEIs) will be the most widely used treatment for Alzheimer's disease. The withdrawal of the first generation AChEIs drug Tacrine (TAC)/ Cognex from the market as a result of hepatotoxicity has always been an interesting case study.
View Article and Find Full Text PDFJ Integr Neurosci
December 2021
Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, 400016 Chongqing, China.
The disorder of lipid metabolism, especially cholesterol metabolism, can promote Alzheimer's Disease. Curcumin can ameliorate lipid metabolic disorder in the brain of Alzheimer's Disease patients, while the mechanism is not clear. APP/PS1 (APPswe/PSEN1dE9) double transgenic mice were divided into dementia, low-dose, and high-dose groups and then fed for six months with different dietary concentrations of curcumin.
View Article and Find Full Text PDFAging Cell
December 2021
Department of Physiology, National University of Singapore, Singapore, Singapore.
Clinical studies have shown that female brains are more predisposed to neurodegenerative diseases such as Alzheimer's disease (AD), but the cellular and molecular mechanisms behind this disparity remain unknown. In several mouse models of AD, synaptic plasticity dysfunction is an early event and appears before significant accumulation of amyloid plaques and neuronal degeneration. However, it is unclear whether sexual dimorphism at the synaptic level contributes to the higher risk and prevalence of AD in females.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!