Neuroblastoma is the second most common paediatric cancer. It developsfrom undifferentiated simpatico-adrenal lineage cells and is mostly sporadic; however, theaetiology behind the development of neuroblastoma is still not fully understood. Intracellularcalcium ([Ca2+]i) is a secondary messenger which regulates numerous cellular processesand, therefore, its concentration is tightly regulated. This review focuses on the role of[Ca2+]i in differentiation, apoptosis and proliferation in neuroblastoma. It describes themechanisms by which [Ca2+]i is regulated and how it modulates intracellular pathways.Furthermore, the importance of [Ca2+]i for the function of anti-cancer drugs is illuminatedin this review as [Ca2+]i could be a target to improve the outcome of anti-cancer treatmentin neuroblastoma. Overall, modulations of [Ca2+]i could be a key target to induce apoptosisin cancer cells leading to a more efficient and effective treatment of neuroblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4491686PMC
http://dx.doi.org/10.3390/cancers7020811DOI Listing

Publication Analysis

Top Keywords

treatment neuroblastoma
8
neuroblastoma
6
[ca2+]i
5
role intracellular
4
intracellular calcium
4
calcium development
4
development treatment
4
neuroblastoma neuroblastoma
4
neuroblastoma second
4
second common
4

Similar Publications

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

Retinal Protection of New Nutraceutical Formulation.

Pharmaceutics

January 2025

Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant'Antonio, Italy.

Retinal ganglion cell (RGC) protection represents an unmet need in glaucoma. This study assessed the neuroprotective, antioxidant, and anti-inflammatory effect of a new nutraceutical formulation named Epicolin, based on citicoline, homotaurine, epigallocatechin-3-gallate, forskolin, and vitamins, through in vitro and in vivo studies. The neuroprotective effect of Epicolin or its single components, and Epicolin compared to an untreated control and two marketed formulations [Formulation G (FG) and N (FN)], was evaluated in neuroblastoma cells (SH-SY5Y) challenged with staurosporine.

View Article and Find Full Text PDF

: Neuroblastoma is a highly aggressive pediatric cancer that arises from immature nerve cells and exhibits a broad spectrum of clinical presentations. While low- and intermediate-risk neuroblastomas often have favorable outcomes, high-risk neuroblastomas are associated with poor prognosis and significant treatment challenges. The complex genetic networks driving these high-risk cases remain poorly understood.

View Article and Find Full Text PDF

The molecular link between stress and carcinogenesis and the positive outcomes of stress intervention in cancer therapy have recently been well documented. Cancer stem cells (CSCs) facilitate cancer malignancy, drug resistance, and relapse and, hence, have emerged as a new therapeutic target. Here, we aimed to investigate the effect of three previously described antistress compounds (triethylene glycol, TEG; Withanone, Wi-N, and Withaferin A, Wi-A) on the stemness and differentiation characteristics of cancer cells.

View Article and Find Full Text PDF

Oxidative stress is universal to all cell types, including cancer. It is elicited by a surplus of reactive oxygen species (ROS) or a reduced cellular ability to defend against those. At low levels (oxidative eustress), this induces altered cellular signaling, while at higher levels (oxidative distress), cellular toxicity and non-specific redox signaling become apparent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!