Microcystin is the most prevalent toxin produced by cyanobacteria and poses a severe threat to livestock, humans and entire ecosystems. We report the preparation of a series of fluorescent microcystin derivatives by direct arginine labelling of the unprotected peptides at the guanidinium side chain. This new method allows a simple late-stage diversification strategy for native peptides devoid of protecting groups under mild conditions. A series of fluorophores were conjugated to microcystin-LR in good to very good yield. The fluorescent probes displayed biological activity comparable to that of unlabelled microcystin, in both phosphatase inhibition assays and toxicity tests on the crustacean Thamnocephalus platyurus. In addition, we demonstrate that the fluorescent probes penetrated Huh7 cells. Whole-animal imaging was performed on T. platyurus: labelled compound was mainly observed in the digestive tract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201500181 | DOI Listing |
Anal Chem
January 2025
Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
A sensitive fluorescence biosensor was developed for microcystin-LR (MC-LR) detection using H1, H2, and H3 DNA probes as sensing elements. The aptamer in H1 can recognize the target. H2 was labeled with FAM and BHQ.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China; Southwest United Graduate School, Kunming 650092, PR China. Electronic address:
Cyanobacteria blooms are concerning due to algal toxins like microcystin-leucine arginine (MC-LR). Despite progress in detecting MC-LR and understanding its toxic effects, including calf thymus DNA (CT-DNA) damage, the mechanisms for fluorescent probe detection of MC-LR and its binding to CT-DNA are poorly understood. In this study, we designed three fluorescent probes for MC-LR detection.
View Article and Find Full Text PDFChemosphere
January 2025
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria.
Recently, the use of click chemistry for localization of chemically modified cyanopeptides has been introduced, i.e., taking advantage of promiscuous adenylation (A) domains in non-ribosomal peptide synthesis (NRPS), allowing for the incorporation of clickable non-natural amino acids (non-AAs) into their peptide products.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11355, Saudi Arabia.
In this report, we describe a fluorescent assay for the detection of six marine toxins in water. The mechanism of detection is based on a duplex-to-complex structure-switching approach. The six aptamers specific to the targeted cyanotoxins were conjugated to a fluorescent dye, carboxyfluorescein (FAM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!