Even in cells that are resistant to the differentiating effects of vitamin D, the activated vitamin D receptor (VDR) can downregulate the mitochondrial respiratory chain and sustain cell growth through enhancing the activity of biosynthetic pathways. The aim of this study was to investigate whether vitamin D is effective also in modulating mitochondria and biosynthetic metabolism of differentiating cells. We compared the effect of vitamin D on two cellular models: the primary human keratinocytes, differentiating and sensitive to the genomic action of VDR, and the human keratinocyte cell line HaCaT, characterized by a rapid growth and resistance to vitamin D. We analysed the nuclear translocation and features of VDR, the effects of vitamin D on mitochondrial transcription and the consequences on lipid biosynthetic fate. We found that the negative modulation of respiratory chain is a general mechanism of action of vitamin D, but at high doses, the HaCaT cells became resistant to mitochondrial effects by upregulating the catabolic enzyme CYP24 hydroxylase. In differentiating keratinocytes, vitamin D treatment promoted intracellular lipid deposition, likewise the inhibitor of respiratory chain stigmatellin, whereas in proliferating HaCaT, this biosynthetic pathway was not inducible by the hormone. By linking the results on respiratory chain and lipid accumulation, we conclude that vitamin D, by suppressing respiratory chain transcription in all keratinocytes, is able to support both the proliferation and the specialized metabolism of differentiating cells. Through mitochondrial control, vitamin D can have an essential role in all the metabolic phenotypes occurring in healthy and diseased skin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.12761DOI Listing

Publication Analysis

Top Keywords

respiratory chain
20
effects vitamin
12
vitamin
11
human keratinocytes
8
cells resistant
8
metabolism differentiating
8
differentiating cells
8
differentiating
6
mitochondrial
5
respiratory
5

Similar Publications

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Tobramycin nanoformulation for chronic pulmonary infections: From drug product definition to scale-up for preclinical evaluation.

Int J Pharm

January 2025

CIDETEC, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Kusudama Therapeutics SA, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San Sebastián, Spain; Biogipuzkoa Health Research Institute, Group of Innovation, 20014 San Sebastian, Spain.

Cystic fibrosis (CF) is characterized by abnormal mucus hydration due to a defective CF Transmembrane Regulator (CFTR) protein, leading to the production of difficult-to-clear mucus. This causes airflow obstruction, recurrent infections, and respiratory complications. Chronic lung infections are the leading cause of death for CF patients and inhaled tobramycin is the first-in-line antibiotic treatment against these infections, mainly caused by Pseudomonas aeruginosa in adult patients.

View Article and Find Full Text PDF

Concoctive principles of detoxification and retention of the main toxic hepatotoxicity of Tripterygium wilfordii and its anti-inflammatory efficacy by concocting with the medicinal excipient Spatholobi Caulis juice.

Fitoterapia

January 2025

College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Medicine, Zhengzhou 450046, China. Electronic address:

Tripterygium wilfordii (TW), which has severe hepatotoxicity, is commonly used as anti-rheumatism. Using the juice of auxiliary herbs in concocting poisonous herbs is a conventional method for toxicity reduction or efficacy enhancement. Traditional Chinese Pharmacy textbooks record that Spatholobi Caulis (SC) can alleviate the side effects caused by TW and also possesses excellent hepatoprotective effect.

View Article and Find Full Text PDF

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!