This article presents the recent developments of radical dispersion polymerizaton controlled by reversible addition fragmentation chain transfer (RAFT) for the production of block copolymer particles of various morphologies, such as core-shell spheres, worms, or vesicles. It is not meant to be an exhaustive review but it rather provides guidelines for non-specialists. The article is subdivided into eight sections. After a general introduction, the mechanism of polymerization-induced self-assembly (PISA) through RAFT-mediated dispersion polymerization is presented and the different parameters that control the morphology produced are discussed. The next two sections are devoted to the choice of the monomer/solvent pair and the macroRAFT agent. Afterwards, post-polymerization morphological order-to-order transitions (i.e. morphological transitions triggered by extrinsic stimuli) or order-to-disorder transitions (i.e. disassembly of chains) are discussed. Assemblies based on more complex polymer architectures, such as triblock copolymers, are presented next, and finally the possibility to stabilize these structures by crosslinking is reported. The manuscript ends with a short conclusion and an outlook.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201500028 | DOI Listing |
Chemistry
January 2025
Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Wuhan, CHINA.
Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
In organic solar cells, the aggregation and crystallization of polymers are significant for bulk heterojunction. Blending with acceptor materials, polymer donor materials can adjust their aggregation by the movement of the chain segments. In this paper, the unfused structures based on thiophene and carbazole are respectively designed and introduced into the donor-acceptor copolymer donor materials to investigate the influence of flexible and rigid structures on polymer-aggregation leading photoelectric performance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA.
This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
The aim of this study was to investigate the inhibitory effect of nintedanib (BIBF) on glioblastoma (GBM) cells and its mechanism of action and to optimize a drug delivery strategy to overcome the limitations posed by the blood-brain barrier (BBB). We analyzed the inhibition of GBM cell lines following BIBF treatment and explored its effect on the autophagy pathway. The cytotoxicity of BIBF was assessed using the CCK-8 assay, and further techniques such as transmission electron microscopy, Western blotting (WB), and flow cytometry were employed to demonstrate that BIBF could block the autophagic pathway by inhibiting the fusion of autophagosomes and lysosomes, ultimately limiting the proliferation of GBM cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!