The aim of this study is to develop and evaluate food-grade liposomal delivery systems for the antifungal compound natamycin. Liposomes made of various soybean lecithins are prepared by solvent injection, leading to small unilamellar vesicles (<130 nm) with controlled polydispersity, able to encapsulate natamycin without significant modification of their size characteristics. Presence of charged phospholipids and reduced content of phosphatidylcholine in the lecithin mixture are found to be beneficial for natamycin encapsulation, indicating electrostatic interactions of the preservative with the polar head of the phospholipids. The chemical instability of natamycin upon storage in these formulations is however significant and proves that uncontrolled leakage out of the liposomes occurs. Efficient prevention of natamycin degradation is obtained by incorporation of sterols (cholesterol, ergosterol) in the lipid mixture and is linked to higher entrapment levels and reduced permeability of the phospholipid membrane provided by the ordering effect of sterols. Comparable action of ergosterol is observed at concentrations 2.5-fold lower than cholesterol and attributed to a preferential interaction of natamycin-ergosterol as well as a higher control of membrane permeability. Fine-tuning of sterol concentration allows preparation of liposomal suspensions presenting modulated in vitro release kinetics rates and enhanced antifungal activity against the model yeast Saccharomyces cerevisiae.

Download full-text PDF

Source
http://dx.doi.org/10.3109/08982104.2015.1046079DOI Listing

Publication Analysis

Top Keywords

formulation antifungal
4
antifungal performance
4
performance natamycin-loaded
4
natamycin-loaded liposomal
4
liposomal suspensions
4
suspensions benefits
4
benefits sterol-enrichment
4
sterol-enrichment aim
4
aim study
4
study develop
4

Similar Publications

Background: Tavaborole (TAV), a benzoxaborole derivative, is an FDA-approved antifungal agent for treating onychomycosis, a common and persistent fungal infection of the toenails.

Objective: This study aimed to develop a robust stability-indicating HPTLC method to determine TAV in nanostructured lipid carriers (NLC) using a comprehensive approach that includes risk assessment, and Analytical Quality by Design.

Methods: The critical method parameters influencing the HPTLC results were screened using a Plackett-Burman screening design followed by its optimization using a central composite optimization design.

View Article and Find Full Text PDF

Background: Posaconazole is a potent antifungal agent widely used to manage invasive fungal infections, especially in immunocompromised individuals. Achieving optimal therapeutic concentrations of posaconazole can be challenging due to interpatient variability, the availability of multiple formulations, and various dosing strategies.

Methods: We conducted a systematic search of PubMed, EMBASE, and the Cochrane Library to identify studies evaluating factors that influence blood concentrations of posaconazole.

View Article and Find Full Text PDF

A rapid, facile, and green spectrofluorometric method was developed for the concurrent precise estimation of itraconazole and ibuprofen. The developed method involved the use of Tween-80 micelle as a green sample matrix for the efficient assay of the analytes of interest. Besides the greenness of Tween-80, it significantly enhanced the native fluorescence of itraconazole by about 450%.

View Article and Find Full Text PDF

Background: Selenium nanoparticles (SeNPs) are highly sought after in diverse industries for their distinct properties and advantages. SeNPs can be synthesized via several methods, including the use of microwave, bain-marie, autoclave, and heater.

Objective: The objective is to optimize the SeNP synthesis formulation, emphasizing stability, concentration, particle size minimization, and uniformity using central composite design.

View Article and Find Full Text PDF

Luliconazole (LCZ) is a topical imidazole antifungal agent with broad-spectrum activity. However, LCZ encounters challenges such as low aqueous solubility, skin retention, and penetration, which reduce its dermal bioavailability and hinder its efficacy in drug delivery. The aim of the present study was to formulate, characterize, and evaluate the in vitro antifungal efficacy of luliconazole-loaded nanostructured lipid carriers (LCZ-NLCs) against a panel of resistant fungal strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!