Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy.

J Control Release

Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain. Electronic address:

Published: July 2015

One of the most important factors behind resistance evolution in malaria is the failure to deliver sufficiently high amounts of drugs to early stages of Plasmodium-infected red blood cells (pRBCs). Despite having been considered for decades as a promising approach, the delivery of antimalarials encapsulated in immunoliposomes targeted to pRBCs has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here we show that encapsulation efficiencies reaching >96% are achieved for the weak basic drugs chloroquine (CQ) and primaquine using the pH gradient loading method in liposomes containing neutral saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the delivery to the cell of drugs not affecting the erythrocytic metabolism. Using this strategy, we have achieved unprecedented complete nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Immunoliposomes studded with monoclonal antibodies raised against the erythrocyte surface protein glycophorin A were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5μM total lipid in the culture, with >95% of added liposomes retained on cell surfaces. When exposed for only 15min to Plasmodium falciparum in vitro cultures of early stages, free CQ had no significant effect on the viability of the parasite up to 200nM, whereas immunoliposomal 50nM CQ completely arrested its growth. In vivo assays in mice showed that immunoliposomes cleared the pathogen below detectable levels at a CQ dose of 0.5mg/kg, whereas free CQ administered at 1.75mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2015.05.284DOI Listing

Publication Analysis

Top Keywords

red blood
8
blood cells
8
early stages
8
immunoliposome-mediated drug
4
drug delivery
4
delivery plasmodium-infected
4
plasmodium-infected non-infected
4
non-infected red
4
cells dual
4
dual therapeutic/prophylactic
4

Similar Publications

Rapid reduction of body size in populations responding to global warming suggests the involvement of temperature-dependent physiological adjustments during growth, such as mitochondrial alterations, in the efficiency of producing metabolic energy, a process that is poorly explored, especially in endotherms. Here, we examined the mitochondrial metabolism and proteomic profile of red blood cells in relation to body size and cellular energetics in nestling shearwaters (Calonectris diomedea) developing at different natural temperatures. We found that nestlings of warmer nests had lighter bodies and smaller beaks at fledging.

View Article and Find Full Text PDF

Introduction: Increasing evidence links amyloid beta (Aβ) aggregation with inflammation. This pilot study investigated the use of an immunoassay panel to map biomarker changes in patients with Alzheimer's disease (AD). Furthermore, we evaluated the stability of protein quantification after multiple freeze-thaw cycles (FTCs).

View Article and Find Full Text PDF

Background: Whether medium-term increased water intake alone, or in combination with co-adjuvant nonexercise interventions aimed to expand blood volume (BV), improve the human cardiovascular phenotype and cardiorespiratory fitness remains unexplored.

Objectives: The purpose of this study was to determine the medium-term impact of increased (+40%) fluid (water) intake (IFI) or IFI plus head-up sleep (IFI + HUS) on BV and the cardiovascular phenotype in healthy individuals.

Methods: Healthy adults (n = 35, age 42 ± 18 years, 51% female) matched by sex, age, body composition, physical activity, and cardiorespiratory fitness were randomly allocated to IFI or IFI + HUS for 3 months.

View Article and Find Full Text PDF

Objectives: Assessment of age, sex and smoking-specific risk of cancer diagnosis and non-cancer mortality following primary care consultation for 15 new-onset symptoms.

Methods And Analysis: Data on patients aged 30-99 in 2007-2017 were extracted from a UK primary care database (CPRD Gold), comprising a randomly selected reference group and a symptomatic cohort of patients presenting with one of 15 new onset symptoms (abdominal pain, abdominal bloating, rectal bleed, change in bowel habit, dyspepsia, dysphagia, dyspnoea, haemoptysis, haematuria, fatigue, night sweats, weight loss, jaundice, breast lump and post-menopausal bleed).Time-to-event models were used to estimate outcome-specific hazards for site-specific cancer diagnosis and non-cancer mortality and to estimate cumulative incidence up to 12 months following index consultation.

View Article and Find Full Text PDF

Circulating tumour cells (CTCs) and CTC clusters are considered metastatic precursors due to their ability to seed distant metastasis. However, navigating the bloodstream presents a significant challenge for CTCs, as they must endure fluid shear forces and resist detachment-induced anoikis. Consequently, while a large number of cells from the primary tumour may enter the circulation, only a tiny fraction will result in metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!