Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b00989DOI Listing

Publication Analysis

Top Keywords

waterborne viruses
12
molecularly imprinted
12
high affinity
8
imprinted polymers
8
detection removal
8
removal waterborne
8
detection
5
detection waterborne
4
viruses
4
viruses high
4

Similar Publications

Swimming pool-associated viral outbreaks in China: causes and solutions.

Front Public Health

January 2025

Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Objective: This study aimed to assess the causes of the swimming pool-associated viral outbreaks in China and discuss the possible preventive measures for the outbreaks.

Methods: A systematic search was performed in 4 Chinese and English databases for studies investigating the swimming pool-associated viral outbreaks in China up to June 2024.

Results: 29 outbreaks were included in the review.

View Article and Find Full Text PDF

Groundwater is an essential drinking water source for humans. However, improper groundwater management leads to fecal contamination and waterborne diseases caused by viral pathogens. Therefore, this study aimed to investigate norovirus (NoV) contamination by conducting nationwide monitoring over five years (2019-2023).

View Article and Find Full Text PDF
Article Synopsis
  • Human Aichi virus 1 (AiV-1) is a picornavirus linked to gastroenteritis and is found frequently in environmental waters, indicating potential fecal contamination.
  • Recent research examined 450 water samples from a Tunisian drinking water treatment plant and Sidi Salem dam, revealing 18.9% tested positive for AiV-1 with varying viral loads throughout different treatment stages.
  • The presence of infectious AiV-1 particles poses a public health risk, and the study highlights the effectiveness of the integrated cell culture approach combined with quantitative molecular detection (ICC-RT-qPCR) for monitoring viruses in water.
View Article and Find Full Text PDF

Deciphering the virucidal potential of hydroxyl radical during ozonation: Implications for waterborne virus inactivation.

Water Res

December 2024

State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory of Microorganism Application and Risk Control (Ministry of Ecology and Environment), School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

The heightened public health risks associated with viral contamination in water have led to a strong emphasis on effective disinfection strategies. Ozone is a potent disinfectant widely employed for the inactivation of pathogens, yet comprehensive reports detailing the virucidal efficacy of hydroxyl radical (•OH) generated during ozonation are limited. The present research meticulously deciphered the role and influencing factors of •OH during ozone disinfection processes, elucidating how •OH enhanced ozone-mediated virus inactivation from both kinetic and molecular biological perspectives.

View Article and Find Full Text PDF

Background: Hepatitis E virus (HEV) causes acute jaundice and poses an important public health problem in low- and middle-income countries. Limited surveillance capacity and suboptimal access to diagnostics leads to under-reporting of HEV infections in affected countries, including Nepal. Serum antibodies against HEV are indicative of past infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!