Purpose: To monitor a real-time follow-up of tumor response to photodynamic therapy (PDT) by dynamic 2-deoxy-2-[(18)F]fluoro-d-glucose ((18)FDG) and positron emission tomography (PET) using two photosensitizing drugs in vivo, and to assess their mechanisms of action.
Methods: Two types of photosensitizers with different action mechanisms were used in rats implanted with two tumors: AlPcS4 mainly affecting the tumor vascular system, and ZnPcS2 largely inducing direct cell kill. Twenty-four hours after administration of either photosensitizer, one tumor served as control while the other was treated with red light during 30min within the 2h PET imaging by infusion of (18)FDG. The usual two-tissue compartment kinetic model was modified to take into account the perturbation of the treatment during imaging.
Results: The illumination of the tumors during PET imaging provoked a net decrease of (18)FDG uptake in tumors treated with AlPcS4 and a near total absence of (18)FDG uptake in tumors treated with ZnPcS2. After the end of illumination, the tumors regained (18)FDG uptake with a more pronounced uptake in the tumors treated with ZnPcS2. The rate constant values of the new (18)FDG kinetic model reflected the response of the tumors to the treatment in both photosensitizers.
Conclusions: Dynamic PET imaging can be used to quantitatively assess in vivo and in real-time the response of tumors to treatments. It is demonstrated that the 30min of treatment was not sufficient to reduce the activity of the tumors. The technique could be extended to directly monitor the effects of drugs in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2015.05.006 | DOI Listing |
JCO Clin Cancer Inform
January 2025
SimBioSys Inc, Chicago, IL.
Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.
Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.
Pharmacol Rep
January 2025
Department of Translational Neuroscience, Center for Addiction Research, Wake Forest University School of Medicine, 115 South Chestnut St, Winston-Salem, NC, 27101, USA.
Background: Cocaine Use Disorder (CUD) remains a significant problem in the United States, with high rates of relapse and no present FDA-approved treatment. The acetylcholine neurotransmitter system, specifically through modulation of muscarinic acetylcholine receptor (mAChR) function, has shown promise as a therapeutic target for multiple aspects of CUD. Enhancement of the M mAChR subtype via positive allosteric modulation has been shown to inhibit the behavioral and neurochemical effects of cocaine across several rodent models of CUD.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Onassis Cardiac Surgery Center, Athens, Greece.
Purpose Of Review: Our purpose was to discuss the advantages and disadvantages of various noninvasive imaging modalities in the evaluation of cardiovascular disease (CVD) in patients with autoimmune rheumatic diseases (ARDs). The detailed knowledge of imaging modalities will facilitate the diagnosis and follow up of CVD in ARDs.
Recent Findings: Autoimmune Rheumatic Diseases (ARDs) are characterized by alterations in immunoregulatory system of the body.
Strahlenther Onkol
January 2025
Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
Purpose: Recent advancements in imaging, particularly 18F-fluorodeoxyglucose positron-emission tomography-computed tomography (FDG-PET/CT), have improved the detection of involved lymph nodes, thus influencing staging accuracy and potentially treatment outcomes. This study is a post hoc analysis of the GAZAI trial data to evaluate the impact of FDG-PET/CT versus computed tomography (CT) alone on radiation target volumes for involved-site radiotherapy (IS-RT) in early-stage follicular lymphoma (FL).
Methods: All patients in the GAZAI trial underwent pretherapeutic FDG-PET/CT examinations, which were subject to central quality control.
Radiology
January 2025
From the Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China (Q.S., P.L., J.Z.); and Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029 (Q.S., P.L., R.Y., D.F.Y., C.I.H.).
Background Angiolymphatic invasion (ALI) is an important prognostic indicator in non-small cell lung cancer (NSCLC). However, few studies focus on radiologic features for predicting ALI in patients with early-stage NSCLCs 30 mm or smaller. Purpose To identify radiologic features for predicting ALI in NSCLCs 30 mm or smaller in maximum diameter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!