Green polymer chemistry: enzyme catalysis for polymer functionalization.

Molecules

Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA.

Published: May 2015

Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272675PMC
http://dx.doi.org/10.3390/molecules20059358DOI Listing

Publication Analysis

Top Keywords

green polymer
4
polymer chemistry
4
chemistry enzyme
4
enzyme catalysis
4
catalysis polymer
4
polymer functionalization
4
functionalization enzyme
4
enzyme catalyzed
4
reactions
4
catalyzed reactions
4

Similar Publications

Nitrogen Enriched Tröger's Base Polymers of Intrinsic Microporosity for Heterogeneous Catalysis.

ACS Appl Polym Mater

January 2025

Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.

Heterogeneous catalysis is significantly enhanced by the use of highly porous polymers with specific functionalities, such as basic groups, which accelerate reaction rates. Polymers of intrinsic microporosity (PIMs) provide a unique platform for catalytic reactions owing to their high surface areas and customizable pore structures. We herein report a series of Tröger's base polymers (TB-PIMs) with enhanced basicity, achieved through the incorporation of nitrogen-containing groups into their repeat units, such as triazine and triphenylamine.

View Article and Find Full Text PDF

In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Visible-light-driven photocatalytic uranium extraction based covalent organic frameworks (COFs) are green and sustainable, but their performance is severely restricted by a strong exciton effect. Herein, inspired by the physiology of cardiac pacing, a novel fluorine-based COF (PyF-DaS-COF) with a biomimetic electronic pump has been fabricated and used for the photocatalytic extraction of uranium. Both experimental and theoretical calculations confirm that strongly electronegative fluorine plays a crucial role in exciton dissociation and charge transfer.

View Article and Find Full Text PDF

A Robust, Biodegradable, and Fire-Retardant Cellulose Nanofibers-Based Structural Material Fabricated from Natural Sargassum.

Adv Mater

January 2025

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus.

View Article and Find Full Text PDF

Enhancing catalytic activity in MoC nanodots via nitrogen doping and graphene integration for efficient hydrogen evolution under alkaline conditions.

J Colloid Interface Sci

January 2025

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, MOE Engineering Research Center of Photoresist Materials, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:

Due to its exceptional electronic properties and catalytic activity, MoC has garnered significant attention for its application in electrocatalysis, particularly for the hydrogen evolution reaction (HER). However, several critical challenges continue to impede its widespread use, especially under strongly alkaline conditions. A primary obstacle is the enhancement of its intrinsic activity through further modification strategies, which remains a key limitation for its broader utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!