The National Institute of Standards and Technology (NIST) has a wide range of Standard Reference Materials (SRMs) which have values assigned for legacy organic pollutants and toxic elements. Existing SRMs serve as homogenous materials that can be used for method development, method validation, and measurement for contaminants that are now of concern. NIST and multiple groups have been measuring the mass fraction of a group of emerging contaminants, polyfluorinated substances (PFASs), in a variety of SRMs. Here we report levels determined in an interlaboratory comparison of up to 23 PFASs determined in five SRMs: sediment (SRMs 1941b and 1944), house dust (SRM 2585), soil (SRM 2586), and sludge (SRM 2781). Measurements presented show an array of PFASs, with perfluorooctane sulfonate being the most frequently detected. SRMs 1941b, 1944, and 2586 had relatively low concentrations of most PFASs measured while 23 PFASs were at detectable levels in SRM 2585 and most of the PFASs measured were at detectable levels in SRM 2781. The measurements made in this study were used to add values to the Certificates of Analysis for SRMs 2585 and 2781.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-013-7330-2 | DOI Listing |
Environ Sci Technol
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Despite advancements in high-resolution screening techniques, the identification of novel perfluoroalkyl and polyfluoroalkyl substances (PFAS) remains challenging without prior structural information. In view of this, we proposed and implemented a new data-driven algorithm to calculate spectral similarity among PFAS, facilitating the generation of molecular networks to screen for unknown compounds. Using this approach, 81 PFAS across 12 distinct classes were identified in soil samples collected near an industrial park in Shandong Province, China, including the first reported occurrence of 12 iodine-substituted PFAS.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
At present, the defluorination of per- and polyfluoroalkyl substances (PFASs), including perfluoroether compounds as substitutes of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate, is limited by the effective active species produced during the oxidation-reduction process. The contribution of the hydrogen radical (•H) as a companion active substance in the photoreduction and electrocatalytic degradation of PFASs has been neglected. Herein, we demonstrate that perfluorocarboxylic acids and perfluoroether compounds such as PFOA and hexafluoropropylene oxide dimer acid (GenX) underwent near-complete photodegradation and effective defluorination by continuously generating •H through perfluoroalkyl radical activation of water under UV irradiation without any reagents and catalysts.
View Article and Find Full Text PDFBackground: The increased use of chemicals leads to a continuous deposition of chemicals in the environment and to a continuous increase in exposure of the global and the European population. Comprehensive burden of disease analyses are however still missing for many countries.
Methods: Using the World Health Organization's Environmental Burden of Disease (EBD) approach and combining data from the European Human Biomonitoring (HBM) dashboard with disease and population data, we estimated the comprehensive attributable burden (AB) for the year 2021, in the best-case quantified by disability-adjusted life years (DALY).
Toxics
December 2024
Pennsylvania Water Science Center, U.S. Geological Survey, New Cumberland, PA 17070, USA.
Per- and polyfluoroalkyl substances (PFAS) are contaminants that can lead to adverse health effects in aquatic organisms, including reproductive toxicity and developmental abnormalities. To assess the ecological health risk of PFAS in Pennsylvania stream surface water, we conducted a comprehensive analysis that included both measured and predicted estimates. The potential combined exposure effects of 14 individual PFAS to aquatic biota were estimated using the sum of exposure-activity ratios (ΣEARs) in 280 streams.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!