The exacerbating roles of CCAAT/enhancer-binding protein homologous protein (CHOP) in the development of bleomycin-induced pulmonary fibrosis and the preventive effects of tauroursodeoxycholic acid (TUDCA) against pulmonary fibrosis in mice.

Pharmacol Res

Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Center for Clinical Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.

Published: September 2015

The purpose of this study was to evaluate the role of CCAAT/enhancer-binding protein homologous protein (CHOP), an important transcription factor that regulates the inflammatory reaction during the endoplasmic reticulum (ER) stress response, in the development of pulmonary fibrosis induced by bleomycin (BLM) in mice. An intratracheal injection of BLM transiently increased the expression of CHOP mRNA and protein in an early phase (days 1 and 3) in mice lungs. BLM-induced pulmonary fibrosis was significantly attenuated in Chop gene deficient (Chop KO) mice, compared with wild-type (WT) mice. Furthermore, the inflammatory reactions evaluated by protein concentration, the total number of leucocytes and neutrophils in the bronchoalveolar lavage fluid (BALF), the mRNA expression of interleukin 1b and caspase 11, and the apoptotic cell death were suppressed in Chop KO mice compared with those in WT mice. In addition, administration of tauroursodeoxycholic acid (TUDCA), a pharmacological agent that can inhibit CHOP expression, inhibited the BLM-induced pulmonary fibrosis and inflammation, and the increase in Chop mRNA expression in WT mice in a dose-dependent manner. These results suggest that the ER stress-induced transcription factor, CHOP, at least in part, plays an important role in the development of BLM-induced pulmonary fibrosis in mice, and that the inhibition of CHOP expression by a pharmacological agent, such as TUDCA, may be a promising strategy for the prevention of pulmonary fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2015.05.004DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
28
blm-induced pulmonary
12
chop
10
mice
9
ccaat/enhancer-binding protein
8
protein homologous
8
homologous protein
8
protein chop
8
tauroursodeoxycholic acid
8
acid tudca
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!