Background: Compliance is one of the mechanical features of a vascular prosthesis (VP) that influences its performances. The goal of the present in vitro study was to attempt characterizing textile VP compliance through mechanical tests proposed in the standards.
Methods: Three different models of commercially available knitted VP (P1, P2, and P3) were studied using longitudinal and circumferential traction tests on coated and uncoated samples. Five samples of each model were considered for each test. The Young modulus was then calculated to indirectly predict the longitudinal and radial compliance of the VP. Moreover, actual compliance was measured on a specific device that regulates the intraluminal pressure of a fluid maintained in the tested VP at 37°C. VP dilatation under pressure load was measured with a digital camera system.
Results: The Young modulus variations from one VP to the other were compared with the differences between effective compliance values at radial, longitudinal, and volume level. Although the presented results show differences among the VP, one can observe that the graft materials' Young modulus and the compliance properties are linked together in general.
Conclusions: Although VPs are subjected to multidirectional stresses ex vivo, unidirectional standard mechanical tests, through the measurement of the materials Young modulus, can help predicting their compliance, however, in a limited frame.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.avsg.2015.02.014 | DOI Listing |
Sci Rep
January 2025
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081, China.
Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology (SLIET), Longowal, 148106 Sangrur, Punjab, India. Electronic address:
In the present investigation, the formulation and thorough assessment of biodegradable composite films were conducted, utilizing pectin extracted from banana peel in conjunction with synthesized silver zeolite nanoparticles. The evaluation of physical properties, microstructural investigation, mechanical characteristics, and barrier properties was done providing valuable insights into various attributes of the film. The amalgamation of silver zeolite nanoparticles with the extracted pectin from banana peel results in biodegradable composite films exhibiting distinct physical, mechanical, barrier, and thermal properties.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, Università degli Studi di Milano, via G: Colombo, 71, 20133 Milano, Italy.
Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan.
: Orally disintegrating film (ODF) is prepared using water-soluble polymers as film-forming agents. To improve mechanical and disintegration properties, some polymers need to be blended with others. This study aimed to investigate the utility of hydroxypropyl cellulose (HPC) and hydroxypropyl methyl cellulose (HPMC) as blend film-forming components for ODFs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!