The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2015.03.008 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada.
The practical application of polyethylene glycol (PEG) phase change materials (PCMs) necessitates exceptional shape stability, rapid thermal responsiveness, and a substantial thermal storage capacity. The present study focuses on the fabrication of a highly robust cellulose nanofibril (CNF) based aerogel with an ordered structure, serving as a three-dimensional (3D) scaffold for PEG to effectively prevent any potential leakage. Additionally, hydroxyl and amino functional groups are introduced to functionalize boron nitride nanosheets (BNNS-g), which are incorporated into the aerogel to enhance its thermal conductivity.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India.
The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane () with aryl boronic ester-based diol () moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both and intracellular amastigote burden compared to the free AmB.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, 430072, P. R. China.
Exosome-based drug delivery holds significant promise for cancer chemotherapy. However, current methods for loading drugs into exosomes are inefficient and cost-prohibitive for practical application. In this study, boron clusters are mixed with doxorubicin (DOX) and exosomes, enabling the efficient encapsulation of DOX into exosomes through a superchaotropic effect.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China. Electronic address:
Antibiotic resistance combined with bacteria internalization result in recurrent infections that seriously threaten human health. To overcome these problems, a pH/HO dual-responsive nanoparticle (COSBN@CFS@PS) that can target macrophages, exhibiting synergistic antibiotic and β-lactamase inhibitor activity, is reported. Chitosaccharides (COS) is covalently bound with benzenboronic acid pinacol ester and assemble with cefoxitin sodium salt (CFS) to form COSBN@CFS nanoparticles.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
The chemotherapeutic effectiveness of breast cancer treatment is currently unsatisfactory due to inadequate drug delivery, suboptimal drug release, and drug inactivation. Herein, we present an innovative boronate ester lipid nanoformulation to improve the delivery of a platinum (IV) prodrug (Pt-C12) and veliparib (Veli), aiming to increase their therapeutic efficacy through a synergistic effect. We identify the optimal ratio of Pt-C12 to Veli for achieving synergy in vitro, followed by the encapsulation of Pt-C12 and Veli in lipid nanoparticles (NPs) incorporating responsive boronate ester lipids (LPC-PPE) to produce responsive lipid NPs (LPV NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!