AI Article Synopsis

  • The study presents a method to isolate specific cell types, like pluripotent stem cell (PSC)-derived populations, using endogenous miRNA activities instead of relying solely on known cell surface antigens.
  • By utilizing synthetic mRNAs encoding fluorescent proteins that respond to miRNAs from target cells, the method can efficiently purify cardiomyocytes and other cell types.
  • This innovative miRNA switch technique proves effective for various cell types, including endothelial cells and insulin-producing cells, providing an alternative isolation strategy when traditional methods are not available.

Article Abstract

Isolation of specific cell types, including pluripotent stem cell (PSC)-derived populations, is frequently accomplished using cell surface antigens expressed by the cells of interest. However, specific antigens for many cell types have not been identified, making their isolation difficult. Here, we describe an efficient method for purifying cells based on endogenous miRNA activity. We designed synthetic mRNAs encoding a fluorescent protein tagged with sequences targeted by miRNAs expressed by the cells of interest. These miRNA switches control their translation levels by sensing miRNA activities. Several miRNA switches (miR-1-, miR-208a-, and miR-499a-5p-switches) efficiently purified cardiomyocytes differentiated from human PSCs, and switches encoding the apoptosis inducer Bim enriched for cardiomyocytes without cell sorting. This approach is generally applicable, as miR-126-, miR-122-5p-, and miR-375-switches purified endothelial cells, hepatocytes, and insulin-producing cells differentiated from hPSCs, respectively. Thus, miRNA switches can purify cell populations for which other isolation strategies are unavailable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2015.04.005DOI Listing

Publication Analysis

Top Keywords

mirna switches
12
cell populations
8
cell types
8
expressed cells
8
cells interest
8
cell
7
switches
5
cells
5
mirna
5
efficient detection
4

Similar Publications

Variant 3'UTRs provide mRNAs with different binding sites for miRNAs or RNA-binding proteins (RBPs) allowing the establishment of new regulatory environments. Regulation of 3'UTR length impacts on the control of gene expression by regulating accessibility of miRNAs or RBPs to homologous sequences in mRNAs. Studying the dynamics of mRNA length variations in atherosclerosis (ATS) progression and reversion in ApoE-deficient mice exposed to a high-fat diet and treated with an αCD40-specific siRNA or with a sequence-scrambled siRNA as control.

View Article and Find Full Text PDF
Article Synopsis
  • Postinterventional restenosis poses challenges in treating peripheral vascular disease, as current drugs hinder endothelial repair while preventing neointima hyperplasia.
  • Stem cell-derived exosomes offer therapeutic benefits by delivering functional microRNAs but face limitations in targeting and tissue uptake in injured vessels.
  • To improve efficacy, researchers created platelet-mimetic exosomes (PM-EXOs) that enhance targeting to vascular injuries and promote endothelial repair with minimal side effects, demonstrating significant potential in reducing neointima formation.
View Article and Find Full Text PDF

The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).

View Article and Find Full Text PDF

Noncoding RNAs (ncRNAs) play critical roles in essential cell fate decisions. However, the exact molecular mechanisms underlying ncRNA-mediated bistable switches remain elusive and controversial. In recent years, systematic mathematical and quantitative experimental analyses have made significant contributions to elucidating the molecular mechanisms of controlling ncRNA-mediated cell fate decision processes.

View Article and Find Full Text PDF

The Yin and Yang of hsa-miR-1244 expression levels during activation of the UPR control cell fate.

Cell Commun Signal

December 2024

Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, Wroclaw, 50- 383, Poland.

Regulation of endoplasmic reticulum (ER) homeostasis plays a critical role in maintaining cell survival. When ER stress occurs, a network of three pathways called the unfolded protein response (UPR) is activated to reestablish homeostasis. While it is known that there is cross-talk between these pathways, how this complex network is regulated is not entirely clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!