A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A single-cell model of PIP3 dynamics using chemical dimerization. | LitMetric

A single-cell model of PIP3 dynamics using chemical dimerization.

Bioorg Med Chem

European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Electronic address:

Published: June 2015

Most cellular processes are driven by simple biochemical mechanisms such as protein and lipid phosphorylation, but the sum of all these conversions is exceedingly complex. Hence, intuition alone is not enough to discern the underlying mechanisms in the light of experimental data. Toward this end, mathematical models provide a conceptual and numerical framework to formally evaluate the plausibility of biochemical processes. To illustrate the use of these models, here we built a mechanistic computational model of PI3K (phosphatidylinositol 3-kinase) activity, to determine the kinetics of lipid metabolizing enzymes in single cells. The model is trained to data generated upon perturbation with a reversible small-molecule based chemical dimerization system that allows for the very rapid manipulation of the PIP3 (phosphatidylinositol 3,4,5-trisphosphate) signaling pathway, and monitored with live-cell microscopy. We find that the rapid relaxation system used in this work decreased the uncertainty of estimating kinetic parameters compared to methods based on in vitro assays. We also examined the use of Bayesian parameter inference and how the use of such a probabilistic method gives information on the kinetics of PI3K and PTEN activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2015.04.074DOI Listing

Publication Analysis

Top Keywords

chemical dimerization
8
single-cell model
4
model pip3
4
pip3 dynamics
4
dynamics chemical
4
dimerization cellular
4
cellular processes
4
processes driven
4
driven simple
4
simple biochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!