As an ectothermic animal, crayfish immunity and their resistance to pathogen can be significantly affected by environmental factors such as light and temperature. It has been found for a long time that multiple immune parameters of animals and human are circadian-regulated by light-entrained circadian rhythm. Whether temperature also affects the immune rhythm of animals still remains unclear. In the present study, we investigated the effect of temperature cycles on the rhythm of crayfish immunity and their resistance. Survival experiments demonstrated that temperature cycles of 24 °C and 18 °C effectively entrained the circadian rhythm of crayfish resistance to Aeromonas hydrophila in constant dark. After being exposed to temperature cycles, the crayfish injected at different time points exhibited significant difference in resistance to A. hydrophila. Bacterial growth and total hemocyte count (THC) also showed circadian variation in crayfish subjected to temperature cycles, but phenoloxidase (PO) activity didn't show rhythmic change under the same conditions. Quantitative real-time PCR revealed that basal expression of crustin1 and astacidin in crayfish subjected to temperature cycles was circadian-rhythmic, but induced expression by A. hydrophila didn't show the same rhythm. In contrast, crayfish maintained at constant temperature showed completely arrhythmic in bacterial resistance, immune parameters mentioned above and the expression of antimicrobial peptides. The results present here collectively indicated that temperature cycles entrained circadian rhythm of some immune parameters and shaped crayfish resistance to bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2015.05.025 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613 401, Tamil Nadu, India.
This study presents the fabrication of highly conducting Au fabric electrodes using a layer-by-layer (LBL) approach and its application toward energy storage. Through the ligand-exchange mechanism, the alternating layers of tris(2-aminoethyl)amine (TREN) and gold nanoparticles (Au NPs) encapsulated with tetraoctylammonium bromide (TOABr) ligands (Au-TOABr) were deposited onto the fabric to achieve a highly conducting Au fabric (0.12 Ω/□) at room temperature in just two LBL cycles.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Microorganisms, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, University of Lincoln, Brayford Pool, LN6 7TS Lincoln, United Kingdom.
We analyzed the thermal, structural, and dynamic properties of maghemite using classical molecular dynamics, focusing on bulk and nanoparticle systems. We explored their behavior when heated to high temperatures (above the melting point) and during cooling, as well as under thermal cycles ending at intermediate temperatures. Our findings show that in the bulk system, both the tetrahedral and octahedral iron sub-lattices undergo a phase transition prior to melting.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China.
The practical applications of all-solid-state batteries (ASSBs) are hindered by poor Li kinetics in electrodes due to the inadequate contact between the cathode active materials (CAMs) and solid-state electrolytes (SSEs). Therefore, improving the contact interface between CAMs and SSEs is necessary to improve the cathodic Li kinetics by increasing the lithium-ion transport sites. To address this issue, sub-micrometer LiPSCl (SU-LPSC) particles of high specific areas were utilized to fabricate cathodes with high mass loading.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, India.
In this study, we demonstrate MXene (TiCT)-based coin-cell asymmetric supercapacitor (coin-cell ASC) exhibiting high energy density and high power density along with good capacitance. We synthesized mesoporous carbon (MC) by annealing alginic acid at varying temperatures (900 °C, 1000 °C and 1100 °C). Among the prepared samples, MC-1000 exhibited a highly porous structure and a higher surface area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!