Effect of aging process on adsorption of diethyl phthalate in soils amended with bamboo biochar.

Chemosphere

Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China; Guangdong Dazhong Agriculture Science Co. Ltd., Hongmei Town, Dongguan, Guangdong 523169, China. Electronic address:

Published: January 2016

Biochar is a carbonaceous sorbent and can be used as a potential material to reduce the bioavailability of organic pollutants in contaminated soils. In the present study, the adsorption and desorption of diethyl phthalate (DEP) onto soils amended with bamboo biochar was investigated with a special focus on the effect of biochar application rates and aging conditions on the adsorption capacity of the soils. Biochar amendment significantly enhanced the soil adsorption of DEP that increased with increasing application rates of biochar. However, the adsorption capacity decreased by two aging processes (alternating wet and dry, and constantly moist). In the soil with low organic carbon (OC) content, the addition of 0.5% biochar (without aging) increased the adsorption by nearly 98 times compared to the control, and exhibited the highest adsorption capacity among all the treatments. In the soil with high OC content, the adsorption capacity in the treatment of 0.5% biochar without aging was 3.5 and 3 times greater than those of the treatments of biochar aged by alternating wet and dry, and constantly moist, respectively. Moreover, constantly moist resulted in a greater adsorption capacity than alternating wet and dry treatments regardless of biochar addition. This study revealed that biochar application enhanced soil sorption of DEP, however, the enhancement of the adsorption capacity was dependent on the soil organic carbon levels, and aging processes of biochar.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.05.037DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
24
biochar
12
alternating wet
12
wet dry
12
constantly moist
12
adsorption
10
diethyl phthalate
8
soils amended
8
amended bamboo
8
bamboo biochar
8

Similar Publications

Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.

High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.

View Article and Find Full Text PDF

This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.

View Article and Find Full Text PDF

Tuning Dual Catalytic Active Sites of Pt Single Atoms Paired with High-Entropy Alloy Nanoparticles for Advanced Li-O Batteries.

ACS Nano

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.

To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).

View Article and Find Full Text PDF

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

The -doped biochar is recognized as a promising, cost-effective, and efficient material for CO adsorption. However, achieving efficient enrichment of -containing adsorption sites and improving their accessibility remains a bottleneck problem that restricts the adsorption performance of -doped biochar. Herein, a synthesis strategy for nitrogen-doped biochar by one-pot ionothermal treatment of biomass and zeolitic imidazolate framework (ZIF) precursors accompanied by pyrolysis is demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!