Atherosclerosis is a lipid-driven chronic inflammatory disorder. Monocytes and macrophages are key immune cells in the development of disease and clinical outcome. It is becoming increasingly clear that epigenetic pathways govern many aspects of monocyte and macrophage differentiation and activation. The dynamic regulation of epigenetic patterns provides opportunities to alter disease-associated epigenetic states. Therefore, pharmaceutical companies have embraced the targeting of epigenetic processes as new approaches for interventions. Particularly histone deacetylase (Hdac) inhibitors and DNA-methyltransferase inhibitors have long received attention and several of them have been approved for clinical use in relation to hematological malignancies. The key focus is still on oncology, but Alzheimer's disease, Huntington's disease and inflammatory disorders are coming in focus as well. These developments raise opportunities for the epigenetic targeting in cardiovascular disease (CVD). In this review we discuss the epigenetic regulation of the inflammatory pathways in relation to atherosclerosis with a specific attention to monocyte- and macrophage-related processes. What are the opportunities for future therapy of atherosclerosis by epigenetic interventions?
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2015.03.101 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
Stable inheritance of DNA N-methyladenine (6mA) is crucial for its biological functions in eukaryotes. Here, we identify two distinct methyltransferase (MTase) complexes, both sharing the catalytic subunit AMT1, but featuring AMT6 and AMT7 as their unique components, respectively. While the two complexes are jointly responsible for 6mA maintenance methylation, they exhibit distinct enzymology, DNA/chromatin affinity, genomic distribution, and knockout phenotypes.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America.
Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.
View Article and Find Full Text PDFIndian J Pediatr
January 2025
Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India.
Hypospadias, a common congenital anomaly of male genitalia, shows significant heritability and familial recurrence, particularly in consanguineous families. This study explored the role of KMT2C polymorphisms in a Yemeni family with two affected siblings. Comprehensive analysis identified 475 unique SNPs in KMT2C, with 59 shared between parents, suggesting common ancestry.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Oncology, Yanbian University Hospital, Yanji, 133000, China.
Background: Recent studies have highlighted the role of RNA modification, that is, the dysregulation of epitranscriptomics, in tumorigenesis and progression. The potential for undoing epigenetic changes may develop novel therapeutic and prognostic approaches. However, the roles of these RNA modifications in the tumor microenvironment (TME) are still unknown.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Parkinson's disease is a complex neurodegenerative disorder characterized by degeneration of dopaminergic neurons, with patients manifesting varying motor and nonmotor symptoms. Previous studies using single-cell RNA sequencing in rodent models and humans have identified distinct heterogeneity of neurons and glial cells with differential vulnerability. Recent studies have increasingly leveraged multiomics approaches, including spatial transcriptomics, epigenomics, and proteomics, in the study of Parkinson's disease, providing new insights into pathogenic mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!