Biocompatible anionic polyelectrolyte for improved liposome based gene transfection.

Int J Pharm

Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China. Electronic address:

Published: July 2015

Cationic liposomes have been widely used as efficient gene carriers. However, the serious cytotoxicity caused by exposed positive charges restricts the further application of those kinds of gene vectors. Thus, it is challenging to develop biocompatiable non-positive charge carriers to achieve high gene transfection efficiencies. Herein, we report a novel design by pasting biocompatible anionic polyelectrolyte, namely alginic acid, hyaluronic acid, pectin and polyglutamic acid, to the positive charge surface of liposome/pDNA complex. Through shielding the positive charges, the new gene carriers show decreased cytotoxicity while still maintaining high transfection efficiency. To be noted, the complex formed by coating polyglutamic acid to the surface of liposome/pDNA greatly enhanced the transfection efficiency in HepG2 cells, and the use of pectin shows increased transfection in MCF-7 cells. Hemolysis assay proved a possible mechanism that when the new gene complex was internalized into cells, as acidity increases, more side chains become hydrophobic, and thus destabilizing the endosomal membrane to accelerate DNA escape. The present results suggest that such anionic polyelectrolyte covered liposome based carrier possess promising application for clinical gene delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2015.05.046DOI Listing

Publication Analysis

Top Keywords

anionic polyelectrolyte
12
biocompatible anionic
8
liposome based
8
gene transfection
8
gene carriers
8
positive charges
8
polyglutamic acid
8
surface liposome/pdna
8
transfection efficiency
8
gene
7

Similar Publications

Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.

View Article and Find Full Text PDF

Mesoscale Filamentous Polyelectrolytes: Chemical Functionalization and Fluidic Structure.

Small

January 2025

Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA, 01003, USA.

Article Synopsis
  • The paper discusses the preparation of mesoscale polymer filaments to explore their properties, which exist between molecular and bulk scales.
  • It describes a method involving flow coating and evaporative deposition to create charged polymer filaments, specifically using thiol-ene reactions.
  • The research finds that these filaments change shape in different aqueous environments, revealing important information about the structure of soft materials at multiple length scales.
View Article and Find Full Text PDF

Anionic Oligo(ethylene glycol)-Based Molecular Brushes: Thermo- and pH-Responsive Properties.

Polymers (Basel)

December 2024

Research Laboratory "New Polymeric Materials", Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia.

Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids.

View Article and Find Full Text PDF

Strong Anionic Fluorene Donor-Acceptor Copolyelectrolytes from Protected Hydrophobic Precursors.

Macromol Rapid Commun

January 2025

Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands.

Conjugated polyelectrolytes (CPEs), materials that are defined by a -conjugated backbone and charged ionic functional groups, are frequently prepared through direct polymerization of charged monomer species in aqueous media. This route is, however, often accompanied by labor-intensive work-up procedures, low yields, and ultimately results in materials that are difficult to characterize. To overcome these inconveniences, in this work protection chemistry is applied on sulfonate-functionalized fluorene monomers that are polymerized under standard Suzuki polycondensation conditions to obtain protected donor-acceptor copolymers.

View Article and Find Full Text PDF

Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging.

Nat Commun

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.

Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!