Dissipation of organophosphorus pesticides in wheat during pasta processing.

Food Chem

Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey.

Published: July 2008

For investigating the carryover of some organophosphorus pesticide residues in the cereal food chain from grain to consumer, a study was set up on durum wheat, semolina and pasta. Pesticide-free durum wheat was placed into a small-scale model of a commercial storage vessel and treated with pesticides (malathion, fenitrothion, chlorpyrifos methyl, and pirimiphos methyl) according to the raw material legislation of Turkey. The residue levels of insecticides were determined in wheat, semolina, and spaghetti produced from stored wheat at various time intervals during five months of storage. A multiresidue analysis was performed using GC equipped with an NPD. The confirmation was performed by GC-MS. The residue levels of insecticides in wheat exceeded the maximum residue limits (MRLs) for wheat. The storage period was generally not effective enough to reduce the residues in wheat to levels below the MRLs. Although a considerable amount of the insecticides remained in the semolina, spaghetti processing significantly reduced residue concentrations in general. Pirimiphos methyl was the most persistent of the insecticides and comparatively less substantial loss occurred during milling and spaghetti processing due to its physicochemical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2007.12.048DOI Listing

Publication Analysis

Top Keywords

wheat
8
durum wheat
8
wheat semolina
8
pirimiphos methyl
8
residue levels
8
levels insecticides
8
semolina spaghetti
8
spaghetti processing
8
dissipation organophosphorus
4
organophosphorus pesticides
4

Similar Publications

Maize lethal necrosis (MLN) is a devastating disease of maize caused by synergy between two viruses: maize chlorotic mottle virus (MCMV) and a potyvirus, often sugarcane mosaic virus (SCMV). Throughout the 2010s, severe MLN outbreaks occurred in East Africa including Kenya, Rwanda, and Ethiopia. Previous studies have shown extensive sequence diversity among SCMV isolates collected from this region.

View Article and Find Full Text PDF

Preserving the Biologically Coherent Generic Concept of , 'Plant Destroyer'.

Phytopathology

March 2025

Mendel University in Brno, Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Zemědělská 3, 613 00 Brno, Brno, Czech Republic, 613 00;

is a long-established, well known and globally important genus of plant pathogens. Phylogenetic evidence has shown that the biologically distinct, obligate biotrophic downy mildews evolved from at least twice. Since, cladistically, this renders 'paraphyletic', it has been proposed that evolutionary clades be split into multiple genera (Runge et al.

View Article and Find Full Text PDF

Rapid quality evaluation of wheat flour containing moderate level of gluten using near-infrared spectroscopy and chemometrics.

J Sci Food Agric

March 2025

Key Laboratory of Detection and Risk Prevention of Key Hazardous Materials in Food, China General Chamber of Commerce, Ningbo Key Laboratory of Detection, Control, and Early Warning of Key Hazardous Materials in Food, College of Food Science and Engineering, Ningbo University, Ningbo, China.

Background: Currently, flour quality evaluation methods are varied, but there are some issues, such as single evaluation indicators and insufficient comprehensiveness. The present study aimed to develop a more comprehensive and rapid evaluation method for flour quality.

Results: We first measured nine key quality indicators of dough samples, raw noodle products and cooked noodle products made from wheat flour.

View Article and Find Full Text PDF

Wheat is cultivated across diverse global environments, and its productivity is significantly impacted by various biotic stresses, most importantly but not limited to rust diseases, Fusarium head blight, wheat blast, and powdery mildew. The genetic diversity of modern cultivars has been eroded by domestication and selection, increasing their vulnerability to biotic stress due to uniformity. The rapid spread of new highly virulent and aggressive pathogen strains has exacerbated this situation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!