The flatness of Lamellipodia explained by the interaction between actin dynamics and membrane deformation.

J Theor Biol

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria. Electronic address:

Published: September 2015

The crawling motility of many cell types relies on lamellipodia, flat protrusions spreading on flat substrates but (on cells in suspension) also growing into three-dimensional space. Lamellipodia consist of a plasma membrane wrapped around an oriented actin filament meshwork. It is well known that the actin density is controlled by coordinated polymerization, branching, and capping processes, but the mechanisms producing the small aspect ratios of lamellipodia (hundreds of nm thickness vs. several μm lateral and inward extension) remain unclear. The main hypothesis of this work is a strong influence of the local geometry of the plasma membrane on the actin dynamics. This is motivated by observations of co-localization of proteins with I-BAR domains (like IRSp53) with polymerization and branching agents along the membrane. The I-BAR domains are known to bind to the membrane and to prefer and promote membrane curvature. This hypothesis is translated into a stochastic mathematical model where branching and capping rates, and polymerization speeds depend on the local membrane geometry and branching directions are influenced by the principal curvature directions. This requires the knowledge of the deformation of the membrane, being described in a quasi-stationary approximation by minimization of a modified Helfrich energy, subject to the actin filaments acting as obstacles. Simulations with this model predict pieces of flat lamellipodia without any prescribed geometric restrictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2015.05.010DOI Listing

Publication Analysis

Top Keywords

actin dynamics
8
membrane
8
plasma membrane
8
polymerization branching
8
branching capping
8
i-bar domains
8
actin
5
flatness lamellipodia
4
lamellipodia explained
4
explained interaction
4

Similar Publications

Balancing limited resources in actin network competition.

Curr Biol

January 2025

Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France. Electronic address:

In cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources.

View Article and Find Full Text PDF

The dynamics of focal adhesions (FAs) are essential physiological processes involved in cell spreading, metastasis, and regulation of the actin cytoskeleton. FAs are complex structures comprising proteins, such as paxillin and zyxin, which interact with extracellular membranes and influence cell motility and morphology. Although related studies have been reported in various cancers, the function and molecular mechanisms of oral squamous cell carcinoma (OSCC) remain unknown.

View Article and Find Full Text PDF

Many contaminants from scattered sources constantly endanger streams that flow through heavily inhabited areas, commercial districts, and industrial hubs. The responses of transplanted mussels in streams in active biomonitoring programs will reflect the dynamics of environmental stream conditions. This study evaluated the untargeted metabolomic and proteomic responses and free radical scavenging activities of transplanted mussels Sinanodonta woodiana in the Winongo Stream at three stations (S1, S2, S3) representing different pollution levels: low (S1), high (S2), and moderate (S3).

View Article and Find Full Text PDF

STIPS algorithm enables tracking labyrinthine patterns and reveals distinct rhythmic dynamics of actin microridges.

Phys Biol

January 2025

Department of Biological Sciences, Tata Institute of Fundamental Research Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha road, Navy Nagar, Colaba, Mumbai-400005, INDIA, Mumbai, 400005, INDIA.

Tracking and motion analyses of semi-flexible biopolymer networks from time-lapse microscopy images are important tools that enable quantitative measurements to unravel the dynamic and mechanical properties of biopolymers in living tissues, crucial for understanding their organization and function. Biopolymer networks are challenging to track due to continuous stochastic transitions, such as merges and splits, which cause local neighbourhood rearrangements over short time and length scales. To address this, we propose the STIPS algorithm (Spatio Temporal Information on Pixel Subsets) to track these events by creating pixel subsets that link trajectories across frames.

View Article and Find Full Text PDF

The transmembrane glycoproteins Trop-1/EpCAM and Trop-2 independently trigger Ca and kinase signals for cell growth and tumor progression. Our findings indicated that Trop-1 and Trop-2 tightly colocalize at macroscopic, ruffle-like protrusions (RLP), that elevate from the cell perimeter, and locally recur over hundreds of seconds. These previously unrecognized elevated membrane regions ≥20 µm-long, up to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!