Macrophage Mitochondrial Energy Status Regulates Cholesterol Efflux and Is Enhanced by Anti-miR33 in Atherosclerosis.

Circ Res

From the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (D.K., M.-A.N., L.R., M.G., E.R., P.S., K.J.R.); Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada (A.B.T., M.-A.N., R.S., J.P.P., M.-E.H., K.J.R.); National Research Council of Canada, Ottawa, Ontario, Canada (R.S., J.P.P.); Marc and Ruti Bell Program for Vascular Biology and Disease, The Leon H. Charney Division of Cardiology, New York University School of Medicine (M.O., K.J.M.); and Department of Molecular Medicine and Surgery (L.P., U.H.) and Department of Medicine (L.M.), Karolinska Institute, Stockholm, Sweden.

Published: July 2015

Rationale: Therapeutically targeting macrophage reverse cholesterol transport is a promising approach to treat atherosclerosis. Macrophage energy metabolism can significantly influence macrophage phenotype, but how this is controlled in foam cells is not known. Bioinformatic pathway analysis predicts that miR-33 represses a cluster of genes controlling cellular energy metabolism that may be important in macrophage cholesterol efflux.

Objective: We hypothesized that cellular energy status can influence cholesterol efflux from macrophages, and that miR-33 reduces cholesterol efflux via repression of mitochondrial energy metabolism pathways.

Methods And Results: In this study, we demonstrated that macrophage cholesterol efflux is regulated by mitochondrial ATP production, and that miR-33 controls a network of genes that synchronize mitochondrial function. Inhibition of mitochondrial ATP synthase markedly reduces macrophage cholesterol efflux capacity, and anti-miR33 required fully functional mitochondria to enhance ABCA1-mediated cholesterol efflux. Specifically, anti-miR33 derepressed the novel target genes PGC-1α, PDK4, and SLC25A25 and boosted mitochondrial respiration and production of ATP. Treatment of atherosclerotic Apoe(-/-) mice with anti-miR33 oligonucleotides reduced aortic sinus lesion area compared with controls, despite no changes in high-density lipoprotein cholesterol or other circulating lipids. Expression of miR-33a/b was markedly increased in human carotid atherosclerotic plaques compared with normal arteries, and there was a concomitant decrease in mitochondrial regulatory genes PGC-1α, SLC25A25, NRF1, and TFAM, suggesting these genes are associated with advanced atherosclerosis in humans.

Conclusions: This study demonstrates that anti-miR33 therapy derepresses genes that enhance mitochondrial respiration and ATP production, which in conjunction with increased ABCA1 expression, works to promote macrophage cholesterol efflux and reduce atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578799PMC
http://dx.doi.org/10.1161/CIRCRESAHA.117.305624DOI Listing

Publication Analysis

Top Keywords

cholesterol efflux
28
macrophage cholesterol
16
energy metabolism
12
cholesterol
10
macrophage
8
mitochondrial energy
8
energy status
8
cellular energy
8
mitochondrial atp
8
atp production
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!