Defects in mitochondrial fission and cyclin dependent kinase 5 (CDK5) activation are early events that precede neuronal loss following NMDA-induced neuronal death. Here, we report that the cytoplasmic CDK5 tightly regulates mitochondrial morphology defects associated with NMDA-induced neuronal injury via regulation of the mitochondrial fission protein, dynamin-related protein 1 (DRP1). We show that DRP1 is a direct target of CDK5. CDK5-mediated phosphorylation of DRP1 at a conserved Serine residue, S585, is elevated at the mitochondria and is associated with increased mitochondrial fission. Ectopic expression of a cytoplasmic CDK5 or mutant DRP1-S585D results in increased mitochondrial fragmentation in primary neurons. Conversely, expression of a dominant negative form of cytoplasmic CDK5 or mutant DRP1-S585A results in elongated mitochondria. In addition, pharmacological inhibition of CDK5 by Roscovitine inhibits DRP1 phosphorylation and mitochondrial fission associated with NMDA-induced neuronal loss. Importantly, conditional deletion of CDK5 significantly attenuates DRP1 phosphorylation at S585 and rescues mitochondrial fission defects in neurons exposed to NMDA. Our studies delineate an important mechanism by which CDK5 regulates mitochondrial morphology defects associated with neuronal injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512627 | PMC |
http://dx.doi.org/10.1093/hmg/ddv188 | DOI Listing |
Chemosphere
December 2024
Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
The review aims to examine the neurotoxic effects of arsenic, particularly exploring the roles of glial cells-astrocytes, microglia, and oligodendrocytes, amid its widespread environmental contamination and impact on cognitive impairments. It highlights the role of altered neurotrophin and growth factor signaling in disrupting neuronal health and cognitive performance. It elucidates the intricate interactions between oxidative stress, DNA damage, neurotransmitter disruption, and cellular signaling alterations, underscoring the vital importance of the glial cells.
View Article and Find Full Text PDFRedox Biol
December 2024
Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK. Electronic address:
Ca overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury.
View Article and Find Full Text PDFExp Appl Acarol
December 2024
Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, 2010, Tunisia.
Hyalomma ticks are important vectors of pathogens affecting human and animal health. This study aimed to assess the outputs of three molecular markers (16S, 12S rRNA, and COI) for accurate tick species molecular identification, genetic diversity assessment, and phylogenetic positioning of Hyalomma tick specimens from Tunisia. A total of 20 tickspecimens were collected from different hosts including cattle, camels, and turtles in nine Tunisian governorates.
View Article and Find Full Text PDFBiol Trace Elem Res
December 2024
Department of Animal Science, North Carolina State University, Plants for Human Health Institute, NC Research Campus, Kannapolis, NC, USA.
Atmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract.
View Article and Find Full Text PDFFunct Integr Genomics
December 2024
Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil.
Mimosa tenuiflora, popularly known as "Jurema-Preta", is a perennial tree or shrub native to the tropical regions of the Americas, particularly among Afro-Brazilian and Indigenous Brazilian communities. Known for producing N,N-Dimethyltryptamine, a psychedelic compound with profound psychological effects, Jurema-Preta has been studied for its therapeutic potential in mental health. This study offers a comprehensive analysis of the plastid (ptDNA) and mitochondrion (mtDNA) genomes of M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!